Cargando…

Nanoscale Detonation Carbon Demonstrates Biosafety in Human Cell Culture

The production method of nanoscale detonation carbon (NDC) has recently been developed at Lavrentyev Institute of Hydrodynamics SB RAS. This method uses the reaction of acetylene with oxygen conducted in the detonation mode in fuel-rich acetylene–oxygen mixtures. The morphology and structural featur...

Descripción completa

Detalles Bibliográficos
Autores principales: Malakhova, Anastasia A., Rybin, Denis K., Shtertser, Alexandr A., Dudina, Dina V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414359/
https://www.ncbi.nlm.nih.gov/pubmed/36014109
http://dx.doi.org/10.3390/mi13081187
Descripción
Sumario:The production method of nanoscale detonation carbon (NDC) has recently been developed at Lavrentyev Institute of Hydrodynamics SB RAS. This method uses the reaction of acetylene with oxygen conducted in the detonation mode in fuel-rich acetylene–oxygen mixtures. The morphology and structural features of the NDC particles can be varied by changing the concentration of oxygen in the gaseous mixtures. The particles of NDC can serve as reinforcements in metal matrix composites and additives imparting electrical conductivity to polymer matrix composites. Before NDC can be considered for industrial applications, it is necessary to address the related biological safety concerns. The present work was aimed at determining the cytotoxicity of NDC. The NDC powders with two morphologies (obtained using different acetylene/oxygen ratios) were tested on HEK293A human cells. The NDC powder was added to the culture medium in concentrations ranging from 10 ng/mL to 400 μg/mL. The cell viability was determined by a colorimetric EZ4U test and a real-time cell analyzer xCELLigence. None of the NDC samples showed a cytotoxic effect. The results of this study allow us to recommend NDC as a safe and useful product for the development of advanced carbon-based and composite materials.