Cargando…
Powering UAV with Deep Q-Network for Air Quality Tracking
Tracking the source of air pollution plumes and monitoring the air quality during emergency events in real-time is crucial to support decision-makers in making an appropriate evacuation plan. Internet of Things (IoT) based air quality tracking and monitoring platforms have used stationary sensors ar...
Autores principales: | Mohammed, Alaelddin F. Y., Sultan, Salman Md, Cho, Seokheon, Pyun, Jae-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414400/ https://www.ncbi.nlm.nih.gov/pubmed/36015879 http://dx.doi.org/10.3390/s22166118 |
Ejemplares similares
-
Deep-Reinforcement-Learning-Based IoT Sensor Data Cleaning Framework for Enhanced Data Analytics
por: Mohammed, Alaelddin F. Y., et al.
Publicado: (2023) -
Energy Conservation for Internet of Things Tracking Applications Using Deep Reinforcement Learning
por: Sultan, Salman Md, et al.
Publicado: (2021) -
UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy
por: Xie, Jingyi, et al.
Publicado: (2020) -
Airborne Visual Detection and Tracking of Cooperative UAVs Exploiting Deep Learning
por: Opromolla, Roberto, et al.
Publicado: (2019) -
Optimal power allocation for a wireless cooperative network with UAV
por: Yan, Jing, et al.
Publicado: (2022)