Cargando…
Intermodal Four-Wave Mixing Process in Strain-Induced Birefringent Multimode Optical Fibers
Our study investigated the partially degenerate intermodal four-wave mixing (IM-FWM) process in nonlinear multimode optical fibers with strain-induced birefringence. The difference in the refractive index along the two orthogonal directions was due to the photoelastic effect that occurred when the f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414440/ https://www.ncbi.nlm.nih.gov/pubmed/36013741 http://dx.doi.org/10.3390/ma15165604 |
_version_ | 1784775987969392640 |
---|---|
author | Kwaśny, Michał Mergo, Paweł Napierała, Marek Markiewicz, Krzysztof Laudyn, Urszula A. |
author_facet | Kwaśny, Michał Mergo, Paweł Napierała, Marek Markiewicz, Krzysztof Laudyn, Urszula A. |
author_sort | Kwaśny, Michał |
collection | PubMed |
description | Our study investigated the partially degenerate intermodal four-wave mixing (IM-FWM) process in nonlinear multimode optical fibers with strain-induced birefringence. The difference in the refractive index along the two orthogonal directions was due to the photoelastic effect that occurred when the fiber under test (FUT) was subjected to uniformly applied diameter stress caused by winding on a cylinder of a given diameter. Our work analyzed how the nonlinear frequency conversion and the output modal field profiles depended on the degree of birefringence in FUT. The experimental results significantly affected the order of the excited moduli in fiber sections characterized by different amounts of birefringence. We also checked the efficiency of the FWM process for different polarizations of the pump beam to determine those for which the FWM process was most effective for the 532 nm sub-nanosecond pulses. More than 30% conversion efficiency was obtained for the FUTs with a length of tens of centimeters. |
format | Online Article Text |
id | pubmed-9414440 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94144402022-08-27 Intermodal Four-Wave Mixing Process in Strain-Induced Birefringent Multimode Optical Fibers Kwaśny, Michał Mergo, Paweł Napierała, Marek Markiewicz, Krzysztof Laudyn, Urszula A. Materials (Basel) Article Our study investigated the partially degenerate intermodal four-wave mixing (IM-FWM) process in nonlinear multimode optical fibers with strain-induced birefringence. The difference in the refractive index along the two orthogonal directions was due to the photoelastic effect that occurred when the fiber under test (FUT) was subjected to uniformly applied diameter stress caused by winding on a cylinder of a given diameter. Our work analyzed how the nonlinear frequency conversion and the output modal field profiles depended on the degree of birefringence in FUT. The experimental results significantly affected the order of the excited moduli in fiber sections characterized by different amounts of birefringence. We also checked the efficiency of the FWM process for different polarizations of the pump beam to determine those for which the FWM process was most effective for the 532 nm sub-nanosecond pulses. More than 30% conversion efficiency was obtained for the FUTs with a length of tens of centimeters. MDPI 2022-08-15 /pmc/articles/PMC9414440/ /pubmed/36013741 http://dx.doi.org/10.3390/ma15165604 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kwaśny, Michał Mergo, Paweł Napierała, Marek Markiewicz, Krzysztof Laudyn, Urszula A. Intermodal Four-Wave Mixing Process in Strain-Induced Birefringent Multimode Optical Fibers |
title | Intermodal Four-Wave Mixing Process in Strain-Induced Birefringent Multimode Optical Fibers |
title_full | Intermodal Four-Wave Mixing Process in Strain-Induced Birefringent Multimode Optical Fibers |
title_fullStr | Intermodal Four-Wave Mixing Process in Strain-Induced Birefringent Multimode Optical Fibers |
title_full_unstemmed | Intermodal Four-Wave Mixing Process in Strain-Induced Birefringent Multimode Optical Fibers |
title_short | Intermodal Four-Wave Mixing Process in Strain-Induced Birefringent Multimode Optical Fibers |
title_sort | intermodal four-wave mixing process in strain-induced birefringent multimode optical fibers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414440/ https://www.ncbi.nlm.nih.gov/pubmed/36013741 http://dx.doi.org/10.3390/ma15165604 |
work_keys_str_mv | AT kwasnymichał intermodalfourwavemixingprocessinstraininducedbirefringentmultimodeopticalfibers AT mergopaweł intermodalfourwavemixingprocessinstraininducedbirefringentmultimodeopticalfibers AT napierałamarek intermodalfourwavemixingprocessinstraininducedbirefringentmultimodeopticalfibers AT markiewiczkrzysztof intermodalfourwavemixingprocessinstraininducedbirefringentmultimodeopticalfibers AT laudynurszulaa intermodalfourwavemixingprocessinstraininducedbirefringentmultimodeopticalfibers |