Cargando…

Optimization of a Field Emission Electron Source Based on Nano-Vacuum Channel Structures

Recent discoveries in the field of nanoscale vacuum channel (NVC) structures have led to potential on-chip electron sources. However, limited research has reported on the structure or material parameters, and the superiority of a nanoscale vacuum channel in an electron source has not been adequately...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Ji, Lin, Congyuan, Shi, Yongjiao, Li, Yu, Zhao, Xueliang, Zhang, Xiaobing, Zhang, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414455/
https://www.ncbi.nlm.nih.gov/pubmed/36014196
http://dx.doi.org/10.3390/mi13081274
Descripción
Sumario:Recent discoveries in the field of nanoscale vacuum channel (NVC) structures have led to potential on-chip electron sources. However, limited research has reported on the structure or material parameters, and the superiority of a nanoscale vacuum channel in an electron source has not been adequately demonstrated. In this paper, we perform the structural optimization design of an NVC-based electron source. First, the structure parameters of a vertical NVC-based electron source are investigated. Moreover, the symmetrical NVC structure is further demonstrated to improve the emission current and effective electron efficiency. Finally, a symmetrical nano-vacuum channel structure is successfully fabricated based on simulations. The results show that the anode current exceeds 15 nA and that the effective electron efficiency exceeds 20%. Further miniaturizing the NVC structures in high integration can be utilized as an on-chip electron source, thereby, illustrating the potential in applications of electron microscopes, miniature X-ray sources and on-chip traveling wave tubes.