Cargando…
Evaluation of the Formulation Parameter-Dependent Redispersibility of API Nanoparticles from Fluid Bed Granules
The production of nanosuspensions of poorly soluble active pharmaceutical ingredients (API) is a popular technique to counteract challenges regarding bioavailability of such active substances. A subsequent drying of the nanosuspensions is advantageous to improve the long-term stability and the furth...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414476/ https://www.ncbi.nlm.nih.gov/pubmed/36015314 http://dx.doi.org/10.3390/pharmaceutics14081688 |
_version_ | 1784775996971417600 |
---|---|
author | Wewers, Martin Finke, Jan Henrik Czyz, Stefan Van Eerdenbrugh, Bernard John, Edgar Büch, Guido Juhnke, Michael Bunjes, Heike Kwade, Arno |
author_facet | Wewers, Martin Finke, Jan Henrik Czyz, Stefan Van Eerdenbrugh, Bernard John, Edgar Büch, Guido Juhnke, Michael Bunjes, Heike Kwade, Arno |
author_sort | Wewers, Martin |
collection | PubMed |
description | The production of nanosuspensions of poorly soluble active pharmaceutical ingredients (API) is a popular technique to counteract challenges regarding bioavailability of such active substances. A subsequent drying of the nanosuspensions is advantageous to improve the long-term stability and the further processing into solid oral dosage forms. However, associated drying operations are critical, especially with regard to nanoparticle growth, loss in redispersibility and associated compromised bioavailability. This work extends a previous study regarding the applicability of an API (itraconazole) nanosuspension as a granulation liquid in a fluidized bed process with focus on the influence of applied formulation parameters on the structure of obtained nanoparticle-loaded granules and their nanoparticle redispersibility. Generally, a higher dissolution rate of the carrier material (glass beads, lactose, mannitol or sucrose) and a higher content of a matrix former/hydrophilic polymer (PVP/VA or HPMC) in the granulation liquid resulted in the formation of coarser and more porous granules with improved nanoparticle redispersibility. HPMC was found to have advantages as a polymer compared with PVP/VA. In general, a better redispersibility of the nanoparticles from the granules could be associated with better dispersion of the API nanoparticles at the surface of the granules as deduced from the thickness of nanoparticle-loaded layers around the granules. The layer thickness on granules was assessed by means of confocal Raman microscopy. Finally, the dispersion of the nanoparticles in the granule layers was exemplarily described by calculation of theoretical mean nanoparticle distances in the granule layers and was correlated with data obtained from redispersibility studies. |
format | Online Article Text |
id | pubmed-9414476 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94144762022-08-27 Evaluation of the Formulation Parameter-Dependent Redispersibility of API Nanoparticles from Fluid Bed Granules Wewers, Martin Finke, Jan Henrik Czyz, Stefan Van Eerdenbrugh, Bernard John, Edgar Büch, Guido Juhnke, Michael Bunjes, Heike Kwade, Arno Pharmaceutics Article The production of nanosuspensions of poorly soluble active pharmaceutical ingredients (API) is a popular technique to counteract challenges regarding bioavailability of such active substances. A subsequent drying of the nanosuspensions is advantageous to improve the long-term stability and the further processing into solid oral dosage forms. However, associated drying operations are critical, especially with regard to nanoparticle growth, loss in redispersibility and associated compromised bioavailability. This work extends a previous study regarding the applicability of an API (itraconazole) nanosuspension as a granulation liquid in a fluidized bed process with focus on the influence of applied formulation parameters on the structure of obtained nanoparticle-loaded granules and their nanoparticle redispersibility. Generally, a higher dissolution rate of the carrier material (glass beads, lactose, mannitol or sucrose) and a higher content of a matrix former/hydrophilic polymer (PVP/VA or HPMC) in the granulation liquid resulted in the formation of coarser and more porous granules with improved nanoparticle redispersibility. HPMC was found to have advantages as a polymer compared with PVP/VA. In general, a better redispersibility of the nanoparticles from the granules could be associated with better dispersion of the API nanoparticles at the surface of the granules as deduced from the thickness of nanoparticle-loaded layers around the granules. The layer thickness on granules was assessed by means of confocal Raman microscopy. Finally, the dispersion of the nanoparticles in the granule layers was exemplarily described by calculation of theoretical mean nanoparticle distances in the granule layers and was correlated with data obtained from redispersibility studies. MDPI 2022-08-13 /pmc/articles/PMC9414476/ /pubmed/36015314 http://dx.doi.org/10.3390/pharmaceutics14081688 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wewers, Martin Finke, Jan Henrik Czyz, Stefan Van Eerdenbrugh, Bernard John, Edgar Büch, Guido Juhnke, Michael Bunjes, Heike Kwade, Arno Evaluation of the Formulation Parameter-Dependent Redispersibility of API Nanoparticles from Fluid Bed Granules |
title | Evaluation of the Formulation Parameter-Dependent Redispersibility of API Nanoparticles from Fluid Bed Granules |
title_full | Evaluation of the Formulation Parameter-Dependent Redispersibility of API Nanoparticles from Fluid Bed Granules |
title_fullStr | Evaluation of the Formulation Parameter-Dependent Redispersibility of API Nanoparticles from Fluid Bed Granules |
title_full_unstemmed | Evaluation of the Formulation Parameter-Dependent Redispersibility of API Nanoparticles from Fluid Bed Granules |
title_short | Evaluation of the Formulation Parameter-Dependent Redispersibility of API Nanoparticles from Fluid Bed Granules |
title_sort | evaluation of the formulation parameter-dependent redispersibility of api nanoparticles from fluid bed granules |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414476/ https://www.ncbi.nlm.nih.gov/pubmed/36015314 http://dx.doi.org/10.3390/pharmaceutics14081688 |
work_keys_str_mv | AT wewersmartin evaluationoftheformulationparameterdependentredispersibilityofapinanoparticlesfromfluidbedgranules AT finkejanhenrik evaluationoftheformulationparameterdependentredispersibilityofapinanoparticlesfromfluidbedgranules AT czyzstefan evaluationoftheformulationparameterdependentredispersibilityofapinanoparticlesfromfluidbedgranules AT vaneerdenbrughbernard evaluationoftheformulationparameterdependentredispersibilityofapinanoparticlesfromfluidbedgranules AT johnedgar evaluationoftheformulationparameterdependentredispersibilityofapinanoparticlesfromfluidbedgranules AT buchguido evaluationoftheformulationparameterdependentredispersibilityofapinanoparticlesfromfluidbedgranules AT juhnkemichael evaluationoftheformulationparameterdependentredispersibilityofapinanoparticlesfromfluidbedgranules AT bunjesheike evaluationoftheformulationparameterdependentredispersibilityofapinanoparticlesfromfluidbedgranules AT kwadearno evaluationoftheformulationparameterdependentredispersibilityofapinanoparticlesfromfluidbedgranules |