Cargando…

A Novel Magnetic Resonance Imaging-Compatible Titanium Alloy Wire-Reinforced Endotracheal Tube

Reinforced endotracheal tubes (ET) are advantageous in preventing tube obstruction and kinking by procedural compression during neurosurgeries. However, the standard reinforced ET contains an embedded stainless steel (SS) helical wire, which produces artifacts and heat during magnetic resonance imag...

Descripción completa

Detalles Bibliográficos
Autores principales: Ryu, Bikei, Okada, Yoshikazu, Fujita, Nobuko, Nagasaka, Yasuko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414509/
https://www.ncbi.nlm.nih.gov/pubmed/36013768
http://dx.doi.org/10.3390/ma15165632
Descripción
Sumario:Reinforced endotracheal tubes (ET) are advantageous in preventing tube obstruction and kinking by procedural compression during neurosurgeries. However, the standard reinforced ET contains an embedded stainless steel (SS) helical wire, which produces artifacts and heat during magnetic resonance imaging (MRI). Therefore, MRI is not indicated in the presence of a reinforced ET containing SS. To overcome this challenge, we developed an MRI-compatible titanium (Ti) reinforced ET. A newly developed Ti alloy helical wire was inserted in a reinforced ET. Here, we report our first clinical experience with six patients who underwent neurosurgery intubated with this Ti-alloy-reinforced ET. The Ti-alloy-reinforced ET was used in six patients requiring reinforced ET intubation. It was clearly delineated on radiography, and metal artifacts were small on computed tomography. Patients intubated with the Ti-alloy-reinforced ET could safely undergo MRI under sedation. MR images without remarkable susceptibility artifacts were obtained without noted adverse effects. We invented a novel Ti-alloy-reinforced ET. This device allows clinical use during MRI because it is less susceptible to artifacts in high magnetic fields.