Cargando…
Enabling Timely Medical Intervention by Exploring Health-Related Multivariate Time Series with a Hybrid Attentive Model
Modern healthcare practice, especially in intensive care units, produces a vast amount of multivariate time series of health-related data, e.g., multi-lead electrocardiogram (ECG), pulse waveform, blood pressure waveform and so on. As a result, timely and accurate prediction of medical intervention...
Autores principales: | Xie, Jia, Wang, Zhu, Yu, Zhiwen, Guo, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414519/ https://www.ncbi.nlm.nih.gov/pubmed/36015865 http://dx.doi.org/10.3390/s22166104 |
Ejemplares similares
-
Hierarchical attention network for multivariate time series long-term forecasting
por: Bi, Hongjing, et al.
Publicado: (2022) -
Temporal Pattern Attention for Multivariate Time Series of Tennis Strokes Classification
por: Skublewska-Paszkowska, Maria, et al.
Publicado: (2023) -
Deep Multivariate Time Series Embedding Clustering via Attentive-Gated Autoencoder
por: Ienco, Dino, et al.
Publicado: (2020) -
Benchmarking Attention-Based Interpretability of Deep Learning in Multivariate Time Series Predictions
por: Barić, Domjan, et al.
Publicado: (2021) -
Multivariate Time Series Similarity Searching
por: Wang, Jimin, et al.
Publicado: (2014)