Cargando…
Fine-tuning of BERT Model to Accurately Predict Drug–Target Interactions
The identification of optimal drug candidates is very important in drug discovery. Researchers in biology and computational sciences have sought to use machine learning (ML) to efficiently predict drug–target interactions (DTIs). In recent years, according to the emerging usefulness of pretrained mo...
Autores principales: | Kang, Hyeunseok, Goo, Sungwoo, Lee, Hyunjung, Chae, Jung-woo, Yun, Hwi-yeol, Jung, Sangkeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414546/ https://www.ncbi.nlm.nih.gov/pubmed/36015336 http://dx.doi.org/10.3390/pharmaceutics14081710 |
Ejemplares similares
-
A Fine-Tuned BERT-Based Transfer Learning Approach for Text Classification
por: Qasim, Rukhma, et al.
Publicado: (2022) -
Fine-Tuning BERT Models to Classify Misinformation on Garlic and COVID-19 on Twitter
por: Kim, Myeong Gyu, et al.
Publicado: (2022) -
Transfer Learning for Sentiment Analysis Using BERT Based Supervised Fine-Tuning
por: Prottasha, Nusrat Jahan, et al.
Publicado: (2022) -
Pharmacovigilance with Transformers: A Framework to Detect Adverse Drug Reactions Using BERT Fine-Tuned with FARM
por: Hussain, Sajid, et al.
Publicado: (2021) -
Investigation of improving the pre-training and fine-tuning of BERT model for biomedical relation extraction
por: Su, Peng, et al.
Publicado: (2022)