Cargando…

Evaluation of the Growth-Inhibitory Spectrum of Three Types of Cyanoacrylate Nanoparticles on Gram-Positive and Gram-Negative Bacteria

The development of novel effective antibacterial agents is crucial due to increasing antibiotic resistance in various bacteria. Poly (alkyl cyanoacrylate) nanoparticles (PACA-NPs) are promising novel antibacterial agents as they have shown antibacterial activity against several Gram-positive and Gra...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarian, Fean Davisunjaya, Ando, Kazuki, Tsurumi, Shota, Miyashita, Ryohei, Ute, Koichi, Ohama, Takeshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414559/
https://www.ncbi.nlm.nih.gov/pubmed/36005697
http://dx.doi.org/10.3390/membranes12080782
Descripción
Sumario:The development of novel effective antibacterial agents is crucial due to increasing antibiotic resistance in various bacteria. Poly (alkyl cyanoacrylate) nanoparticles (PACA-NPs) are promising novel antibacterial agents as they have shown antibacterial activity against several Gram-positive and Gram-negative bacteria. However, the antibacterial mechanism remains unclear. Here, we compared the antibacterial efficacy of ethyl cyanoacrylate nanoparticles (ECA-NPs), isobutyl cyanoacrylate NPs ((i)BCA-NPs), and ethoxyethyl cyanoacrylate NPs (EECA-NPs) using five Gram-positive and five Gram-negative bacteria. Among these resin nanoparticles, ECA-NPs showed the highest growth inhibitory effect against all the examined bacterial species, and this effect was higher against Gram-positive bacteria than Gram-negative. While (i)BCA-NP could inhibit the cell growth only in two Gram-positive bacteria, i.e., Bacillus subtilis and Staphylococcus aureus, it had negligible inhibitory effect against all five Gram-negative bacteria examined. Irrespective of the differences in growth inhibition induced by these three NPs, N-acetyl-L-cysteine (NAC), a well-known reactive oxygen species (ROS) scavenger, efficiently restored growth in all the bacterial strains to that similar to untreated cells. This strongly suggests that the exposure to NPs generates ROS, which mainly induces cell growth inhibition irrespective of the difference in bacterial species and cyanoacrylate NPs used.