Cargando…

Mineralogical Properties of a Refractory Tantalum-Niobium Slag and the Effect of Roasting on the Leaching of Uranium-Thorium

In order to realize sustainable development, it is beneficial to explore an appropriate process to recover the radionuclides contained in tantalum-niobium slag. By micro-mineralogical analysis and roasting experiments, the effect of uranium-thorium leaching from a refractory tantalum-niobium slag is...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Min, Hu, Ke, Li, Xiang, Wang, Yun, Ouyang, Jinbo, Zhou, Limin, Liu, Zhirong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414679/
https://www.ncbi.nlm.nih.gov/pubmed/36006148
http://dx.doi.org/10.3390/toxics10080469
Descripción
Sumario:In order to realize sustainable development, it is beneficial to explore an appropriate process to recover the radionuclides contained in tantalum-niobium slag. By micro-mineralogical analysis and roasting experiments, the effect of uranium-thorium leaching from a refractory tantalum-niobium slag is investigated. The uranium and thorium content in the slag is 2.26 × 10(3) mg/kg and 7.84 × 10(3) mg/kg, which have large recovery value. As the surface area and pore size of the slag are very small, the leaching agent cannot fully penetrate the particles. Various methods of characterization are used to analyze the mineralogical properties of roasted slag at different temperatures. The leaching ratio of U-Th is 90.84% and 96.62% at the optimum roasting temperature of 500 °C, which are about 39% and 27% higher than original samples. The oxidants Fe(3+), O(2) and Mn can also promote the conversion of insoluble U(IV) to soluble U(VI). Roasting reduces the content of organic C and S, thereby preventing reduction of U(VI), and increasing pore size as well as specific surface area also promote radionuclide leaching. Thus, the roasting method at 500 °C can destroy the surface wrapping structure of radionuclides, reduce the internal density of minerals, and improve uranium-thorium leaching ratio significantly. It is of great practical significance to reduce the radioactive hazard of waste tantalum-niobium slag and to strengthen the sustainable utilization of resources by suitable process improvement techniques.