Cargando…

Processing Effects on the Through-Plane Electrical Conductivities and Tensile Strengths of Microcellular-Injection-Molded Polypropylene Composites with Carbon Fibers

Polymers reinforced with conducting fibers to achieve electrical conductivity have attracted remarkable attention in several engineering applications, and injection molding provides a cost-effective way for mass production. However, the electrical performance usually varies with the molding conditio...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Shia-Chung, Jien, Ming-Yuan, Hsu, Chi-Chuan, Hwang, Shyh-Shin, Feng, Ching-Te
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414686/
https://www.ncbi.nlm.nih.gov/pubmed/36015508
http://dx.doi.org/10.3390/polym14163251
Descripción
Sumario:Polymers reinforced with conducting fibers to achieve electrical conductivity have attracted remarkable attention in several engineering applications, and injection molding provides a cost-effective way for mass production. However, the electrical performance usually varies with the molding conditions. Moreover, high added content of conducting fibers usually results in molding difficulties. In this study, we propose using microcellular (MuCell) injection molding for polypropylene (PP)/carbon fiber (CF, 20, and 30 wt%) composites and hope that the MuCell injection molding process can improve both electrical and mechanical performance as compared with conventional injection molded (CIM) parts under the same CF content. Both molding techniques were also employed with and without gas counter pressure (GCP), and the overall fiber orientation, through-plane electrical conductivity (TPEC), and tensile strength (TS) of the composites were characterized. Based on the various processing technologies, the results can be described in four aspects: (1) Compared with CIM, microcellular foaming significantly influenced the fiber orientation, and the TPECs of the samples with 20 and 30 wt% CF were 18–78 and 5–8 times higher than those of the corresponding samples molded by CIM, respectively; (2) when GCP was employed in the CIM process, the TPEC of the samples with 20 and 30 wt% CF increased by 3 and 2 times, respectively. Similar results were obtained in the case of microcellular injection molding—the TPEC of the 20 and 30 wt% composites increased by 7–74 and 18–32 times, respectively; (3) although microcellular injection molding alone (i.e., without GCP) showed the greatest influence on the randomness of the fiber orientation and the TPEC, the TS of the samples was the lowest due to the uncontrollable foaming cell size and cell size uniformity; (4) in contrast, when GCP was employed in the microcellular foaming process, high TS was obtained, and the TPEC was significantly enhanced. The high foaming quality owing to the GCP implementation improved the randomness of fiber orientation, as well as the electrical and mechanical properties of the composites. Generally speaking, microcellular injection combined with gas counter pressure does provide a promising way to achieve high electrical and mechanical performance for carbon-fiber-added polypropylene composites.