Cargando…
Fall-from-Height Detection Using Deep Learning Based on IMU Sensor Data for Accident Prevention at Construction Sites
Workers at construction sites are prone to fall-from-height (FFH) accidents. The severity of injury can be represented by the acceleration peak value. In the study, a risk prediction against FFH was made using IMU sensor data for accident prevention at construction sites. Fifteen general working mov...
Autores principales: | Lee, Seunghee, Koo, Bummo, Yang, Sumin, Kim, Jongman, Nam, Yejin, Kim, Youngho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414759/ https://www.ncbi.nlm.nih.gov/pubmed/36015868 http://dx.doi.org/10.3390/s22166107 |
Ejemplares similares
-
Detection of Pre-Impact Falls from Heights Using an Inertial Measurement Unit Sensor
por: Kim, Youngho, et al.
Publicado: (2020) -
The Performance of Post-Fall Detection Using the Cross-Dataset: Feature Vectors, Classifiers and Processing Conditions
por: Koo, Bummo, et al.
Publicado: (2021) -
Enhanced Algorithm for the Detection of Preimpact Fall for Wearable Airbags
por: Jung, Haneul, et al.
Publicado: (2020) -
Evaluation of Inertial Sensor-Based Pre-Impact Fall Detection Algorithms Using Public Dataset
por: Ahn, Soonjae, et al.
Publicado: (2019) -
Quantification of Comfort for the Development of Binding Parts in a Standing Rehabilitation Robot
por: Nam, Yejin, et al.
Publicado: (2023)