Cargando…
Modeling Full-Field Transient Flexural Waves on Damaged Plates with Arbitrary Excitations Using Temporal Vibration Characteristics
We propose an efficient semi-analytical method capable of modeling the propagation of flexural waves on cracked plate structures with any forms of excitations, based on the same group of vibration characteristics and validated by a non-contact scanning Laser Doppler Vibrometer (LDV) system. The prop...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414766/ https://www.ncbi.nlm.nih.gov/pubmed/36015716 http://dx.doi.org/10.3390/s22165958 |
_version_ | 1784776068195942400 |
---|---|
author | Wang, Dan-Feng Chuang, Kuo-Chih Liu, Jun-Jie Liao, Chan-Yi |
author_facet | Wang, Dan-Feng Chuang, Kuo-Chih Liu, Jun-Jie Liao, Chan-Yi |
author_sort | Wang, Dan-Feng |
collection | PubMed |
description | We propose an efficient semi-analytical method capable of modeling the propagation of flexural waves on cracked plate structures with any forms of excitations, based on the same group of vibration characteristics and validated by a non-contact scanning Laser Doppler Vibrometer (LDV) system. The proposed modeling method is based on the superposition of the vibrational normal modes of the detected structure, which can be applied to analyze long-time and full-field transient wave propagations. By connecting the vibration-based transient model to a power flow analysis technique, we further analyze the transient waves on a cracked plate subjected to different excitation sources and show the influence of the damage event on the path of the propagating waves. The experimental results indicate that the proposed semi-analytical method can model the flexural waves, and through that, the crack information can be revealed. |
format | Online Article Text |
id | pubmed-9414766 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94147662022-08-27 Modeling Full-Field Transient Flexural Waves on Damaged Plates with Arbitrary Excitations Using Temporal Vibration Characteristics Wang, Dan-Feng Chuang, Kuo-Chih Liu, Jun-Jie Liao, Chan-Yi Sensors (Basel) Article We propose an efficient semi-analytical method capable of modeling the propagation of flexural waves on cracked plate structures with any forms of excitations, based on the same group of vibration characteristics and validated by a non-contact scanning Laser Doppler Vibrometer (LDV) system. The proposed modeling method is based on the superposition of the vibrational normal modes of the detected structure, which can be applied to analyze long-time and full-field transient wave propagations. By connecting the vibration-based transient model to a power flow analysis technique, we further analyze the transient waves on a cracked plate subjected to different excitation sources and show the influence of the damage event on the path of the propagating waves. The experimental results indicate that the proposed semi-analytical method can model the flexural waves, and through that, the crack information can be revealed. MDPI 2022-08-09 /pmc/articles/PMC9414766/ /pubmed/36015716 http://dx.doi.org/10.3390/s22165958 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Dan-Feng Chuang, Kuo-Chih Liu, Jun-Jie Liao, Chan-Yi Modeling Full-Field Transient Flexural Waves on Damaged Plates with Arbitrary Excitations Using Temporal Vibration Characteristics |
title | Modeling Full-Field Transient Flexural Waves on Damaged Plates with Arbitrary Excitations Using Temporal Vibration Characteristics |
title_full | Modeling Full-Field Transient Flexural Waves on Damaged Plates with Arbitrary Excitations Using Temporal Vibration Characteristics |
title_fullStr | Modeling Full-Field Transient Flexural Waves on Damaged Plates with Arbitrary Excitations Using Temporal Vibration Characteristics |
title_full_unstemmed | Modeling Full-Field Transient Flexural Waves on Damaged Plates with Arbitrary Excitations Using Temporal Vibration Characteristics |
title_short | Modeling Full-Field Transient Flexural Waves on Damaged Plates with Arbitrary Excitations Using Temporal Vibration Characteristics |
title_sort | modeling full-field transient flexural waves on damaged plates with arbitrary excitations using temporal vibration characteristics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414766/ https://www.ncbi.nlm.nih.gov/pubmed/36015716 http://dx.doi.org/10.3390/s22165958 |
work_keys_str_mv | AT wangdanfeng modelingfullfieldtransientflexuralwavesondamagedplateswitharbitraryexcitationsusingtemporalvibrationcharacteristics AT chuangkuochih modelingfullfieldtransientflexuralwavesondamagedplateswitharbitraryexcitationsusingtemporalvibrationcharacteristics AT liujunjie modelingfullfieldtransientflexuralwavesondamagedplateswitharbitraryexcitationsusingtemporalvibrationcharacteristics AT liaochanyi modelingfullfieldtransientflexuralwavesondamagedplateswitharbitraryexcitationsusingtemporalvibrationcharacteristics |