Cargando…
The Effect of the Co−Blending Process on the Sensing Characteristics of Conductive Chloroprene Rubber/Natural Rubber Composites
Three different blending procedures were used to create multiwalled carbon nanotube (MWCNT)-modified chloroprene rubber (CR)/natural rubber (NR) blended composites (MWCNT/CR–NR). The effects of the blending process on the morphology of the conductive network and interfacial contacts were researched,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414831/ https://www.ncbi.nlm.nih.gov/pubmed/36015583 http://dx.doi.org/10.3390/polym14163326 |
Sumario: | Three different blending procedures were used to create multiwalled carbon nanotube (MWCNT)-modified chloroprene rubber (CR)/natural rubber (NR) blended composites (MWCNT/CR–NR). The effects of the blending process on the morphology of the conductive network and interfacial contacts were researched, as well as the resistance–strain response behavior of the composites and the mechanism of composite sensitivity change under different processes. The results show that MWCNT/CR–NR composites have a wide strain range (ε = 300%) and high dynamic resistance–strain response repeatability. Different blending procedures have different effects on the morphology of the conductive network and the interfacial interactions of the composites. If the blending procedures have wider conductive phase spacing and stronger interfacial contacts, the change in the conductive path and tunneling distance occurs more rapidly, and the material has a higher resistance–strain response sensitivity. |
---|