Cargando…
Real-Time Depth of Anaesthesia Assessment Based on Hybrid Statistical Features of EEG
This paper proposed a new depth of anaesthesia (DoA) index for the real-time assessment of DoA using electroencephalography (EEG). In the proposed new DoA index, a wavelet transform threshold was applied to denoise raw EEG signals, and five features were extracted to construct classification models....
Autores principales: | Huang, Yi, Wen, Peng, Song, Bo, Li, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414837/ https://www.ncbi.nlm.nih.gov/pubmed/36015860 http://dx.doi.org/10.3390/s22166099 |
Ejemplares similares
-
Monitoring the Depth of Anaesthesia
por: Musizza, Bojan, et al.
Publicado: (2010) -
Time-Frequency Analysis of EEG Signals and GLCM Features for Depth of Anesthesia Monitoring
por: Mousavi, Seyed Mortaza, et al.
Publicado: (2021) -
Real-time assessment of hypnotic depth, using an EEG-based brain-computer interface: a preliminary study
por: Obukhov, Nikita V., et al.
Publicado: (2023) -
Depth of general anaesthesia monitors
por: Rani, D Devika, et al.
Publicado: (2012) -
A novel spectral entropy-based index for assessing the depth of anaesthesia
por: Ra, Jee Sook, et al.
Publicado: (2021)