Cargando…

Laboratory Evaluation of ESGFIBER in Asphalt Paving Mixture

The global desire to improve the performance of road pavements and move towards a sustainable transportation system has immensely encouraged the usage of fibers in asphalt paving materials. In this study, glass fibers trademarked as ESGFIBER produced by the ESG Industry company Limited from Daejeon,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mrema, Agathon, Kim, Hyeong-Su, Lim, Jae-Kyu, Lee, Jae-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415077/
https://www.ncbi.nlm.nih.gov/pubmed/36013889
http://dx.doi.org/10.3390/ma15165754
Descripción
Sumario:The global desire to improve the performance of road pavements and move towards a sustainable transportation system has immensely encouraged the usage of fibers in asphalt paving materials. In this study, glass fibers trademarked as ESGFIBER produced by the ESG Industry company Limited from Daejeon, Korea were added in dense-graded asphalt mix. The purpose of this study was to evaluate effects that fibers have on volumetric properties, mechanical properties, and long-term performance of asphalt concrete mixes. ESGFIBER were mixed together with aggregates and asphalt binder in asphalt mix and five different asphalt mixes with different dosage of fibers were evaluated in this study. The Marshall mix design method was used for designing all asphalt mixes, and laboratory tests indirect tensile strength test, deformation strength test and Hamburg wheel tracking test were conducted to evaluate moisture susceptibility, fatigue cracking behavior and rutting resistance of asphalt concrete mixes. The results showed that when ESGFIBER were added in asphalt mix moisture susceptibility, fatigue cracking and rutting resistance were both improved. The usage of ESGFIBER in asphalt concrete mixes can be very beneficial since the mechanical and long-term performance were improved upon the addition of fibers.