Cargando…
Capture and Prediction of Rainfall-Induced Landslide Warning Signals Using an Attention-Based Temporal Convolutional Neural Network and Entropy Weight Methods
The capture and prediction of rainfall-induced landslide warning signals is the premise for the implementation of landslide warning measures. An attention-fusion entropy weight method (En-Attn) for capturing warning features is proposed. An attention-based temporal convolutional neural network (ATCN...
Autores principales: | Zhang, Di, Wei, Kai, Yao, Yi, Yang, Jiacheng, Zheng, Guolong, Li, Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415138/ https://www.ncbi.nlm.nih.gov/pubmed/36015997 http://dx.doi.org/10.3390/s22166240 |
Ejemplares similares
-
Regional Rainfall Warning System for Landslides with Creep Deformation in Three Gorges using a Statistical Black Box Model
por: Guo, Zizheng, et al.
Publicado: (2019) -
Deep learning forecast of rainfall-induced shallow landslides
por: Mondini, Alessandro C., et al.
Publicado: (2023) -
Dynamic landslide susceptibility analysis that combines rainfall period, accumulated rainfall, and geospatial information
por: Lee, Jae-Joon, et al.
Publicado: (2022) -
Action Recognition by an Attention-Aware Temporal Weighted Convolutional Neural Network
por: Wang, Le, et al.
Publicado: (2018) -
Landslide Susceptibility Mapping by Fusing Convolutional Neural Networks and Vision Transformer
por: Bao, Shuai, et al.
Publicado: (2022)