Cargando…
ACTIVATION OF THE MITOCHONDRIAL ANTIVIRAL SIGNALING PROTEIN (MAVS) FOLLOWING LIVER ISCHEMIA/REPERFUSION AND ITS EFFECT ON INFLAMMATION AND INJURY
Resuscitation of trauma patients after hemorrhagic shock causes global I/R, which may contribute to organ dysfunction. Oxidative stress resulting from I/R is known to induce signaling pathways leading to the production of inflammatory molecules culminating in organ dysfunction/injury. Our recent wor...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415233/ https://www.ncbi.nlm.nih.gov/pubmed/35670454 http://dx.doi.org/10.1097/SHK.0000000000001949 |
Sumario: | Resuscitation of trauma patients after hemorrhagic shock causes global I/R, which may contribute to organ dysfunction. Oxidative stress resulting from I/R is known to induce signaling pathways leading to the production of inflammatory molecules culminating in organ dysfunction/injury. Our recent work demonstrated that oxidative stress was able to induce activation of the mitochondrial antiviral signaling protein (MAVS), a protein known to be involved in antiviral immunity, in an in vitro model. We therefore hypothesized that the MAVS pathway might be involved in I/R-induced inflammation and injury. The present studies show that MAVS is activated in vivo by liver I/R and in vitro in RAW 264.7 cells by hypoxia/reoxygenation (H/R). We utilized both in vivo (liver I/R in MAVS knockout mice) and in vitro (MAVS siRNA in RAW 264.7 cells followed by H/R) models to study the role of MAVS activation on downstream events. In vivo, we demonstrated augmented injury and inflammation in MAVS knockout mice compared with wild-type animals; as shown by increased hepatocellular injury, induction of hepatocyte apoptosis augmented plasma TNF-α levels. Further, in vitro silencing of MAVS by specific siRNA in RAW 264.7 and exposure of the cells to H/R caused activation of mitophagy. This may represent a compensatory response to increased liver inflammation. We conclude that activation of MAVS by hypoxia/reoxygenation dampens inflammation, potentially suggesting a novel target for intervention. |
---|