Cargando…

Valorization and Development of Acorn Starch as Sustainable and High-Performance Papermaking Additive for Improving Bagasse Pulp and Paper Properties

Improving bagasse pulp and paper properties using forest-byproduct biomass, native Acorn starch (NAS), was compared with conventional wet-end additive cationic corn starch (CCS). The extracted acorn starch was characterized by SEM, XRD, and GPC. The results clearly showed irregular granular shape (6...

Descripción completa

Detalles Bibliográficos
Autores principales: Khaksaar, Ali Baradaran, Jalali Torshizi, Hossein, Hamzeh, Yahya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415251/
https://www.ncbi.nlm.nih.gov/pubmed/36043123
http://dx.doi.org/10.1007/s12649-022-01912-9
Descripción
Sumario:Improving bagasse pulp and paper properties using forest-byproduct biomass, native Acorn starch (NAS), was compared with conventional wet-end additive cationic corn starch (CCS). The extracted acorn starch was characterized by SEM, XRD, and GPC. The results clearly showed irregular granular shape (6–12 μm) with rough surfaces, C(A)-type XRD pattern, and 436.2 kDa molecular weights for NAS. The bagasse pulp retention and drainage as keys of operation performance and runnability were superior by NAS in comparison with CCS, while the lowest dosage of NAS (0.5%) showed superior results than the highest dosages of CCS (1% & 1.5%). The higher NAS adsorption onto the fiber surfaces compared to CCS could be concluded by higher water retention value (WRV) of the pulp together with higher density (up to 20%) and mechanical properties of the produced paper, e.g., tensile (up to 63%), burst (up to 37%) and tear (up to 11%) indices. NAS exploiting naturally as a papermaking additive would provide performance higher than commercial chemically-modified starch. GRAPHICAL ABSTRACT: [Image: see text]