Cargando…
Asymmetric Arc Routing by Coordinating a Truck and Multiple Drones
Unmanned Aerial Vehicles, commonly known as drones, have been widely used in transmission line inspection and traffic patrolling due to their flexibility and environmental adaptability. To take advantage of drones and overcome their limited endurance, the patrolling tasks are parallelized by concurr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415381/ https://www.ncbi.nlm.nih.gov/pubmed/36015838 http://dx.doi.org/10.3390/s22166077 |
Sumario: | Unmanned Aerial Vehicles, commonly known as drones, have been widely used in transmission line inspection and traffic patrolling due to their flexibility and environmental adaptability. To take advantage of drones and overcome their limited endurance, the patrolling tasks are parallelized by concurrently dispatching the drones from a truck which travels on the road network to the nearby task arc. The road network considered in previous research is undirected; however, in reality, the road network usually contains unidirectional arcs, i.e., the road network is asymmetric. Hence, we propose an asymmetric coordinated vehicle-drones arc routing mode for traffic patrolling. In this mode, a truck travelling on an asymmetric road network with multiple drones needs to patrol multiple task arcs, and the drones can be launched and recovered at certain nodes on the truck route, making it possible for drones and the truck to patrol the task in parallel. The total patrol time is the objective function that needs to be minimized given the time limit constraints of drones. The whole problem can be considered as an asymmetric arc routing problem of coordinating a truck and multiple drones. To solve this problem, a large-scale neighborhood search with simulated annealing algorithm (LNS-SA) is proposed. Finally, extensive computation experiments and a real case are carried out. The experimental results show the efficiency of the proposed algorithm. Moreover, a detailed sensitivity analysis is performed on several drone-parameters of interest. |
---|