Cargando…
Prediction of Urban Taxi Travel Demand by Using Hybrid Dynamic Graph Convolutional Network Model
The efficient and accurate prediction of urban travel demand, which is a hot topic in intelligent transportation research, is challenging due to its complicated spatial-temporal dependencies, dynamic nature, and uneven distribution. Most existing forecasting methods merely considered the static spat...
Autores principales: | Zhao, Jinbao, Kong, Weichao, Zhou, Meng, Zhou, Tianwei, Xu, Yuejuan, Li, Mingxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415392/ https://www.ncbi.nlm.nih.gov/pubmed/36015740 http://dx.doi.org/10.3390/s22165982 |
Ejemplares similares
-
Impact of the mixed degree of urban functions on the taxi travel demand
por: Yuan, Changwei, et al.
Publicado: (2021) -
Influence of the built environment on taxi travel demand based on the optimal spatial analysis unit
por: Duan, Yaxin, et al.
Publicado: (2023) -
A Study on the Decay Model of Multi-Block Taxi Travel Demand under the Influence of Major Urban Public Health Events
por: Luo, Feiyi, et al.
Publicado: (2022) -
CACRNN: A Context-Aware Attention-Based Convolutional Recurrent Neural Network for Fine-Grained Taxi Demand Prediction
por: Wu, Wenbin, et al.
Publicado: (2020) -
Potential of on-demand services for urban travel
por: Geržinič, Nejc, et al.
Publicado: (2022)