Cargando…
Deep Learning for Robust Adaptive Inverse Control of Nonlinear Dynamic Systems: Improved Settling Time with an Autoencoder
An adaptive deep neural network is used in an inverse system identification setting to approximate the inverse of a nonlinear plant with the aim of constituting the plant controller by copying to the latter the weights and architecture of the converging deep neural network. This deep learning (DL) a...
Autores principales: | Alwan, Nuha A. S., Hussain, Zahir M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415480/ https://www.ncbi.nlm.nih.gov/pubmed/36015696 http://dx.doi.org/10.3390/s22165935 |
Ejemplares similares
-
Deep autoencoder based domain adaptation for transfer learning
por: Dev, Krishna, et al.
Publicado: (2022) -
An Autoencoder-Based Deep Learning Approach for Load Identification in Structural Dynamics
por: Rosafalco, Luca, et al.
Publicado: (2021) -
Advanced deep learning with Keras: apply deep learning techniques, autoencoders, GANs, variational autoencoders, deep reinforcement learning, policy gradients, and more
por: Atienza, Rowel
Publicado: (2018) -
Respiration rate scales inversely with sinking speed of settling marine aggregates
por: Spilling, Kristian, et al.
Publicado: (2023) -
Neuro-adaptive augmented distributed nonlinear dynamic inversion for consensus of nonlinear agents with unknown external disturbance
por: Mondal, Sabyasachi, et al.
Publicado: (2022)