Cargando…
Image Recognition of Wind Turbine Blade Defects Using Attention-Based MobileNetv1-YOLOv4 and Transfer Learning
Recently, the machine-vision-based blades surface damage detection technique has received great attention for its low cost, easy operation, and lack of a need for prior knowledge. The rapid progress of deep learning has contributed to the promotion of this technology with automatic feature extractio...
Autores principales: | Zhang, Chen, Yang, Tao, Yang, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415496/ https://www.ncbi.nlm.nih.gov/pubmed/36015768 http://dx.doi.org/10.3390/s22166009 |
Ejemplares similares
-
Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model
por: Liu, Jun, et al.
Publicado: (2020) -
Correction to: Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model
por: Liu, Jun, et al.
Publicado: (2021) -
Confidence-Aware Object Detection Based on MobileNetv2 for Autonomous Driving
por: Li, Wei, et al.
Publicado: (2021) -
Materials for Wind Turbine Blades: An Overview
por: Mishnaevsky, Leon, et al.
Publicado: (2017) -
Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4
por: Xu, Shanyong, et al.
Publicado: (2022)