Cargando…

Rapid Seismic Evaluation of Continuous Girder Bridges with Localized Plastic Hinges

In seismic assessment of continuous girder bridges, plastic hinges form in bridge piers to dissipate seismic energy through nonlinear restoring forces. Considering temporal and spatial variations of ground motions, seismic evaluation of the bridges involves nonlinear stochastic vibration and expensi...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Zhaolan, Lv, Mengting, Shen, Minghui, Wang, Haijun, You, Qixuan, Hu, Kai, Jia, Shaomin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415508/
https://www.ncbi.nlm.nih.gov/pubmed/36016072
http://dx.doi.org/10.3390/s22166311
Descripción
Sumario:In seismic assessment of continuous girder bridges, plastic hinges form in bridge piers to dissipate seismic energy through nonlinear restoring forces. Considering temporal and spatial variations of ground motions, seismic evaluation of the bridges involves nonlinear stochastic vibration and expensive computation. This paper presents an approach to significantly increase the efficiency of seismic evaluation for continuous girder bridges with plastic hinges. The proposed approach converts nonlinear motion equations into quasi-linear state equations, solves the equations using an explicit time-domain dimension-reduced iterative method, and incorporates a stochastic sampling method to statistically analyze the seismic response of bridges under earthquake excitation. Taking a 3 × 30 m continuous girder bridge as an example, fiber beam-column elements are used to simulate the elastic–plastic components of the continuous girder bridge, and the elastic–plastic time history analysis of the continuous girder bridge under non-uniform seismic excitation is carried out. Results show that the computation time is only 5% of the time of the nonlinear time history approach while retaining the accuracy. This study advances the capability of rapid seismic assessment and design for bridges with localized nonlinear behaviors such as plastic hinges.