Cargando…

Optimal Progressive Pitch for OneWeb Constellation with Seamless Coverage

Large-scale broadband low earth orbit (LEO) satellite systems have become a possibility due to decreased launch costs and rapidly evolving technology. Preventing huge LEO satellite constellations from interfering with the geostationary earth orbit (GSO) satellite system, progressive pitch is a techn...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Cheng, Wang, Haiwang, Chang, Jiachao, Shao, Fengwei, Shang, Lin, Li, Guotong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415634/
https://www.ncbi.nlm.nih.gov/pubmed/36016063
http://dx.doi.org/10.3390/s22166302
Descripción
Sumario:Large-scale broadband low earth orbit (LEO) satellite systems have become a possibility due to decreased launch costs and rapidly evolving technology. Preventing huge LEO satellite constellations from interfering with the geostationary earth orbit (GSO) satellite system, progressive pitch is a technique to avoid interference with the GSO satellite system that allows the LEO satellite system to maintain a certain angle of separation from the GSO satellite system. Aside from interference avoidance, there is also a need to ensure seamless coverage of the LEO constellation and to optimize the overall transmission capacity of the LEO satellite as much as possible, making it extremely complex to design an effective progressive pitch plan. This paper models an inline interference event and seamless coverage and builds an optimization problem by maximizing transmission capacity. This paper reformulates the problem and designs a genetic algorithm to solve it. From the simulation results, the strategy can avoid harmful interference to the GSO satellite system and ensure the seamless coverage of the LEO constellation, and the satellite transmission capacity is also maximized.