Cargando…
Novel Antimicrobial Peptide “Octoprohibitin” against Multidrug Resistant Acinetobacter baumannii
Octoprohibitin is a synthetic antimicrobial peptide (AMP), derived from the prohibitin-2 gene of Octopus minor. It showed substantial activity against multidrug resistant (MDR) Acinetobacter baumannii with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 200 a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415640/ https://www.ncbi.nlm.nih.gov/pubmed/36015076 http://dx.doi.org/10.3390/ph15080928 |
Sumario: | Octoprohibitin is a synthetic antimicrobial peptide (AMP), derived from the prohibitin-2 gene of Octopus minor. It showed substantial activity against multidrug resistant (MDR) Acinetobacter baumannii with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 200 and 400 µg/mL, respectively. Time-kill kinetics and bacterial viability assays confirmed the concentration-dependent antibacterial activity of octoprohibitin against A. baumannii. The morphology and ultrastructure of A. baumannii were altered by treatment with octoprohibitin at the MIC and MBC levels. Furthermore, propidium iodide-fluorescein diacetate (PI-FDA) staining and 2′,7′-dichlorodihydrofluorescein diacetate (H(2)DCFDA) staining of octoprohibitin-treated A. baumannii revealed membrane permeability alterations and reactive oxygen species (ROS) generation, respectively. Agarose gel retardation results confirmed the DNA-binding ability of octoprohibitin to the genomic DNA of A. baumannii. Furthermore, octoprohibitin showed concentration-dependent inhibition of biofilm formation and eradication. The minimum biofilm inhibition concentration (MBIC) and minimum biofilm eradication concentration (MBEC) of octoprohibitin were 1000 and 1460 µg/mL, respectively. Octoprohibitin produced no significant cytotoxicity up to 800 µg/mL, and no hemolysis was observed up to 400 µg/mL. Furthermore, in vivo analysis in an A. baumannii-infected zebrafish model confirmed the effective bactericidal activity of octoprohibitin with higher cumulative survival percent (46.6%) and fewer pathological signs. Histological analysis showed reduced alterations in the gut, kidney, and gill tissues in the octoprohibitin-treated group compared with those in the phosphate-buffered saline (PBS)-treated group. In conclusion, our results suggest that octoprohibitin is a potential antibacterial and antibiofilm agent against MDR A. baumannii. |
---|