Cargando…
Failure Detection in Quadcopter UAVs Using K-Means Clustering
We propose an unmanned aerial vehicle (UAV) failure detection system as the first step of a three-step autonomous emergency landing safety framework for UAVs. We showed the effectiveness and feasibility of using vibration data with the k-means clustering algorithm in detecting mid-flight UAV failure...
Autores principales: | Cabahug, James, Eslamiat, Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415667/ https://www.ncbi.nlm.nih.gov/pubmed/36015796 http://dx.doi.org/10.3390/s22166037 |
Ejemplares similares
-
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs
por: Nepal, Upesh, et al.
Publicado: (2022) -
Quadcopter UAVs Extended States/Disturbance Observer-Based Nonlinear Robust Backstepping Control
por: Thanh, Ha Le Nhu Ngoc, et al.
Publicado: (2022) -
Quadcopters Testing Platform for Educational Environments
por: Veyna, Uriel, et al.
Publicado: (2021) -
Data‐enabled predictive control for
quadcopters
por: Elokda, Ezzat, et al.
Publicado: (2021) -
Fault Detection and Identification Method for Quadcopter Based on Airframe Vibration Signals
por: Zhang, Xiaomin, et al.
Publicado: (2021)