Cargando…

Subspecies Classification and Comparative Genomic Analysis of Lactobacillus kefiranofaciens HL1 and M1 for Potential Niche-Specific Genes and Pathways

(1) Background: Strains HL1 and M1, isolated from kefir grains, have been tentatively identified, based on their partial 16S rRNA gene sequences, as Lactobacillus kefiranofaciens. The two strains demonstrated different health benefits. Therefore, not only the genetic factors exerting diverse functio...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Sheng-Yao, Chen, Yen-Po, Huang, Ren-Feng, Wu, Yi-Lu, Ho, Shang-Tse, Li, Kuan-Yi, Watanabe, Koichi, Chen, Ming-Ju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415760/
https://www.ncbi.nlm.nih.gov/pubmed/36014054
http://dx.doi.org/10.3390/microorganisms10081637
Descripción
Sumario:(1) Background: Strains HL1 and M1, isolated from kefir grains, have been tentatively identified, based on their partial 16S rRNA gene sequences, as Lactobacillus kefiranofaciens. The two strains demonstrated different health benefits. Therefore, not only the genetic factors exerting diverse functionalities in different L. kefiranofaciens strains, but also the potential niche-specific genes and pathways among the L. kefiranofaciens strains, should be identified. (2) Methods: Phenotypic and genotypic approaches were employed to identify strains HL1 and M1 at the subspecies level. For the further characterization of the probiotic properties of both strains, comparative genomic analyses were used. (3) Results: Both strains were identified as L. kefiranofaciens subsp. kefirgranum. According to the COG function category, dTDP-rhamnose and rhamnose-containing glycans were specifically detected in the L. kefiranofaciens subsp. Kefirgranum genomes. Three unique genes (epsI, epsJ, and epsK) encoding glycosyltransferase in the EPS gene cluster, and the ImpB/MucB/SamB family protein encoding gene were found in HL1 and M1. The specific ability to degrade arginine via the ADI pathway was found in HL1. The presence of the complete glycogen metabolism (glg) operon in the L. kefiranofaciens strains suggested the importance of glycogen synthesis to enable colonization in kefir grains and extend survival under environmental stresses. (4) Conclusions: The obtained novel information on the potential genes and pathways for polysaccharide synthesis and other functionalities in our HL1 and M1 strains could be applied for further functionality predictions for potential probiotic screening.