Cargando…
Comparison of Different Convolutional Neural Network Activation Functions and Methods for Building Ensembles for Small to Midsize Medical Data Sets
CNNs and other deep learners are now state-of-the-art in medical imaging research. However, the small sample size of many medical data sets dampens performance and results in overfitting. In some medical areas, it is simply too labor-intensive and expensive to amass images numbering in the hundreds...
Autores principales: | Nanni, Loris, Brahnam, Sheryl, Paci, Michelangelo, Ghidoni, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415767/ https://www.ncbi.nlm.nih.gov/pubmed/36015898 http://dx.doi.org/10.3390/s22166129 |
Ejemplares similares
-
Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification
por: Nanni, Loris, et al.
Publicado: (2015) -
Comparison of Different Image Data Augmentation Approaches
por: Nanni, Loris, et al.
Publicado: (2021) -
Deep Features for Training Support Vector Machines
por: Nanni, Loris, et al.
Publicado: (2021) -
Convolutional Neural Networks for the Identification of African Lions from Individual Vocalizations
por: Trapanotto, Martino, et al.
Publicado: (2022) -
Face Detection Ensemble with Methods Using Depth Information to Filter False Positives
por: Nanni, Loris, et al.
Publicado: (2019)