Cargando…
Improved Multiple-Model Adaptive Estimation Method for Integrated Navigation with Time-Varying Noise
The accurate noise parameter is essential for the Kalman filter to obtain optimal estimates. However, problems such as variations in the noise environment and measurement anomalies can cause degradation of estimation accuracy or even divergence. The adaptive Kalman filter can simultaneously estimate...
Autores principales: | Song, Jinhao, Li, Jie, Wei, Xiaokai, Hu, Chenjun, Zhang, Zeyu, Zhao, Lening, Jiao, Yubing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415772/ https://www.ncbi.nlm.nih.gov/pubmed/36015737 http://dx.doi.org/10.3390/s22165976 |
Ejemplares similares
-
Optimal Rotational Angular Velocity Determination Method Based on Compound Rotary Semi-Strapdown Inertial Navigation System
por: Zhang, Chenming, et al.
Publicado: (2022) -
Adaptive Estimation of Multiple Fading Factors for GPS/INS Integrated Navigation Systems
por: Jiang, Chen, et al.
Publicado: (2017) -
Measurement Noise Covariance-Adapting Kalman Filters for Varying Sensor Noise Situations
por: Chhabra, Anirudh, et al.
Publicado: (2021) -
Adaptive Unscented Kalman Filter for Target Tracking with Unknown Time-Varying Noise Covariance
por: Ge, Baoshuang, et al.
Publicado: (2019) -
Navigating noise
por: Dijk, Nathanja van, et al.
Publicado: (2017)