Regularities of Microstructure Evolution in a Cu-Cr-Zr Alloy during Severe Plastic Deformation

The effect of severe plastic deformation by the conforming process of equal channel angular extrusion (ECAE-Conform) followed by cold rolling on the microstructures developed in a Cu-0.1Cr-0.1Zr alloy was investigated. Following the ECAE-Conform of 1 to 8 passes (corresponding strains were 0.8 to 6....

Descripción completa

Detalles Bibliográficos
Autores principales: Bodyakova, Anna, Tkachev, Maksim, Raab, Georgy I., Kaibyshev, Rustam, Belyakov, Andrey N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415814/
https://www.ncbi.nlm.nih.gov/pubmed/36013882
http://dx.doi.org/10.3390/ma15165745
Descripción
Sumario:The effect of severe plastic deformation by the conforming process of equal channel angular extrusion (ECAE-Conform) followed by cold rolling on the microstructures developed in a Cu-0.1Cr-0.1Zr alloy was investigated. Following the ECAE-Conform of 1 to 8 passes (corresponding strains were 0.8 to 6.4) cold rolling to a total strain of 4 was accompanied by substantial grain refinement and strengthening. An average grain size tended to approach 160 nm with an increase in the rolling reduction. An increase in the ECAE-Conform strain promoted the grain refinement during subsequent cold rolling. The fraction of the ultrafine grains with a size of 160 nm after cold rolling to a strain of 4 increased from 0.12 to 0.52 as the number of ECAE-Conform passes increased from 1 to 8. Correspondingly, the yield strength increased above 550 MPa. The strengthening could be expressed by a Hall–Petch type relationship with a grain size strengthening factor of 0.11 MPa m(0.5).