Cargando…
Deep Convolutional Generative Adversarial Networks to Enhance Artificial Intelligence in Healthcare: A Skin Cancer Application
In recent years, researchers designed several artificial intelligence solutions for healthcare applications, which usually evolved into functional solutions for clinical practice. Furthermore, deep learning (DL) methods are well-suited to process the broad amounts of data acquired by wearable device...
Autores principales: | La Salvia, Marco, Torti, Emanuele, Leon, Raquel, Fabelo, Himar, Ortega, Samuel, Martinez-Vega, Beatriz, Callico, Gustavo M., Leporati, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416026/ https://www.ncbi.nlm.nih.gov/pubmed/36015906 http://dx.doi.org/10.3390/s22166145 |
Ejemplares similares
-
Evaluation of Preprocessing Methods on Independent Medical Hyperspectral Databases to Improve Analysis
por: Martinez-Vega, Beatriz, et al.
Publicado: (2022) -
Neural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Images
por: La Salvia, Marco, et al.
Publicado: (2022) -
Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images
por: Florimbi, Giordana, et al.
Publicado: (2018) -
Non-Invasive Skin Cancer Diagnosis Using Hyperspectral Imaging for In-Situ Clinical Support
por: Leon, Raquel, et al.
Publicado: (2020) -
In-Vivo and Ex-Vivo Tissue Analysis through Hyperspectral Imaging Techniques: Revealing the Invisible Features of Cancer
por: Halicek, Martin, et al.
Publicado: (2019)