Cargando…

Approximate Analytic Expression for the Time-Dependent Transient Electrophoretic Mobility of a Spherical Colloidal Particle

The general expression is derived for the Laplace transform of the time-dependent transient electrophoretic mobility (with respect to time) of a spherical colloidal particle when a step electric field is applied. The transient electrophoretic mobility can be obtained by the numerical inverse Laplace...

Descripción completa

Detalles Bibliográficos
Autor principal: Ohshima, Hiroyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416042/
https://www.ncbi.nlm.nih.gov/pubmed/36014348
http://dx.doi.org/10.3390/molecules27165108
Descripción
Sumario:The general expression is derived for the Laplace transform of the time-dependent transient electrophoretic mobility (with respect to time) of a spherical colloidal particle when a step electric field is applied. The transient electrophoretic mobility can be obtained by the numerical inverse Laplace transformation method. The obtained expression is applicable for arbitrary particle zeta potential and arbitrary thickness of the electrical double layer around the particle. For the low potential case, this expression gives the result obtained by Huang and Keh. On the basis of the obtained general expression for the Laplace transform of the transient electrophoretic mobility, we present an approximation method to avoid the numerical inverse Laplace transformation and derive a simple approximate analytic mobility expression for a weakly charged particle without involving numerical inverse Laplace transformations. The transient electrophoretic mobility can be obtained directly from this approximate mobility expression without recourse to the numerical inverse Laplace transformation. The results are found to be in excellent agreement with the exact numerical results obtained by Huang and Keh.