Cargando…
A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning
In this paper, a Hall plate readout with a randomized four-phase spinning-current scheme is proposed. The goal is to remove the maximum number of offset components, including the offset associated with spike demodulation. The outcome is that only the smallest possible offset remains, corresponding t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416114/ https://www.ncbi.nlm.nih.gov/pubmed/36015830 http://dx.doi.org/10.3390/s22166069 |
_version_ | 1784776400381673472 |
---|---|
author | Riem, Robbe Raman, Johan Rombouts, Pieter |
author_facet | Riem, Robbe Raman, Johan Rombouts, Pieter |
author_sort | Riem, Robbe |
collection | PubMed |
description | In this paper, a Hall plate readout with a randomized four-phase spinning-current scheme is proposed. The goal is to remove the maximum number of offset components, including the offset associated with spike demodulation. The outcome is that only the smallest possible offset remains, corresponding to the residual offset of the Hall plate which cannot be distinguished from the Hall signal. An additional innovation is to operate various offset-reduction loops in spread-spectrum mode, allowing the removal of error components without notching out any in-band signals. The resulting approach delivers a very large notch-free bandwidth while simultaneously reducing the Hall plate residual offset, making it an enabler for high-bandwidth Hall-based current sensors. To demonstrate the proposed techniques, we have realized a mixed-mode experimental circuit, where the analog part is implemented in a custom integrated circuit, and the digital control system in an FPGA is connected to the analog chip. Measurement results feature a Hall readout system with a notch-free bandwidth up to 820 kHz and a 47 [Formula: see text] Trms noise floor. The input-referred Hall plate offset, based on statistical measurements on 10 samples from a single wafer, is reduced from [Formula: see text] [Formula: see text] to only [Formula: see text] [Formula: see text]. |
format | Online Article Text |
id | pubmed-9416114 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94161142022-08-27 A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning Riem, Robbe Raman, Johan Rombouts, Pieter Sensors (Basel) Article In this paper, a Hall plate readout with a randomized four-phase spinning-current scheme is proposed. The goal is to remove the maximum number of offset components, including the offset associated with spike demodulation. The outcome is that only the smallest possible offset remains, corresponding to the residual offset of the Hall plate which cannot be distinguished from the Hall signal. An additional innovation is to operate various offset-reduction loops in spread-spectrum mode, allowing the removal of error components without notching out any in-band signals. The resulting approach delivers a very large notch-free bandwidth while simultaneously reducing the Hall plate residual offset, making it an enabler for high-bandwidth Hall-based current sensors. To demonstrate the proposed techniques, we have realized a mixed-mode experimental circuit, where the analog part is implemented in a custom integrated circuit, and the digital control system in an FPGA is connected to the analog chip. Measurement results feature a Hall readout system with a notch-free bandwidth up to 820 kHz and a 47 [Formula: see text] Trms noise floor. The input-referred Hall plate offset, based on statistical measurements on 10 samples from a single wafer, is reduced from [Formula: see text] [Formula: see text] to only [Formula: see text] [Formula: see text]. MDPI 2022-08-14 /pmc/articles/PMC9416114/ /pubmed/36015830 http://dx.doi.org/10.3390/s22166069 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Riem, Robbe Raman, Johan Rombouts, Pieter A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning |
title | A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning |
title_full | A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning |
title_fullStr | A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning |
title_full_unstemmed | A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning |
title_short | A 2 MS/s Full Bandwidth Hall System with Low Offset Enabled by Randomized Spinning |
title_sort | 2 ms/s full bandwidth hall system with low offset enabled by randomized spinning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416114/ https://www.ncbi.nlm.nih.gov/pubmed/36015830 http://dx.doi.org/10.3390/s22166069 |
work_keys_str_mv | AT riemrobbe a2mssfullbandwidthhallsystemwithlowoffsetenabledbyrandomizedspinning AT ramanjohan a2mssfullbandwidthhallsystemwithlowoffsetenabledbyrandomizedspinning AT romboutspieter a2mssfullbandwidthhallsystemwithlowoffsetenabledbyrandomizedspinning AT riemrobbe 2mssfullbandwidthhallsystemwithlowoffsetenabledbyrandomizedspinning AT ramanjohan 2mssfullbandwidthhallsystemwithlowoffsetenabledbyrandomizedspinning AT romboutspieter 2mssfullbandwidthhallsystemwithlowoffsetenabledbyrandomizedspinning |