Cargando…

In-Flight Alignment of Integrated SINS/GPS/Polarization/Geomagnetic Navigation System Based on Federal UKF

As a common integrated navigation system, the strapdown inertial navigation system (SINS)/global positioning system (GPS) can estimate velocity and position errors well. Many auxiliary attitude measurement systems can be used to improve the accuracy of attitude angle errors. In this paper, the in-fl...

Descripción completa

Detalles Bibliográficos
Autores principales: Cao, Songyin, Gao, Honglian, You, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416158/
https://www.ncbi.nlm.nih.gov/pubmed/36015743
http://dx.doi.org/10.3390/s22165985
Descripción
Sumario:As a common integrated navigation system, the strapdown inertial navigation system (SINS)/global positioning system (GPS) can estimate velocity and position errors well. Many auxiliary attitude measurement systems can be used to improve the accuracy of attitude angle errors. In this paper, the in-flight alignment problem of the integrated SINS/GPS/Polarization/Geomagnetic navigation system is discussed. Firstly, the SINS/Geomagnetic subsystem is constructed to improve the estimation accuracy of horizontal attitude angles. Secondly, the polarization sensor is used to improve the estimation accuracy of heading angle. Then, a federal unscented Kalman filter (FUKF) with non-reset structure is applied to fuse the navigation data. Finally, simulation results for the integrated navigation system are provided based on experimental data. It can be shown that the proposed approach can improve not only the speed and position, but also the attitude error effectively.