Cargando…
Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity
Melanoma is a skin cancer characterized by rapid growth and spread for which current therapies produce both resistance and increased risk of infection. To develop new anti-melanoma biocompatible species, the series of complexes Cu(N-N)(bzac)(X)⋅nH(2)O (N-N: 1,10-phenanthroline/2,2′-bipyridine, Hbzac...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416163/ https://www.ncbi.nlm.nih.gov/pubmed/36015318 http://dx.doi.org/10.3390/pharmaceutics14081692 |
_version_ | 1784776412909010944 |
---|---|
author | Olar, Rodica Maxim, Catalin Badea, Mihaela Bacalum, Mihaela Raileanu, Mina Avram, Speranta Korošin, Nataša Čelan Burlanescu, Teodora Rostas, Arpad Mihai |
author_facet | Olar, Rodica Maxim, Catalin Badea, Mihaela Bacalum, Mihaela Raileanu, Mina Avram, Speranta Korošin, Nataša Čelan Burlanescu, Teodora Rostas, Arpad Mihai |
author_sort | Olar, Rodica |
collection | PubMed |
description | Melanoma is a skin cancer characterized by rapid growth and spread for which current therapies produce both resistance and increased risk of infection. To develop new anti-melanoma biocompatible species, the series of complexes Cu(N-N)(bzac)(X)⋅nH(2)O (N-N: 1,10-phenanthroline/2,2′-bipyridine, Hbzac: 1-phenyl-1,3-butanedione, X: NO(3)/ClO(4), and n = 0, 1) was studied. Single-crystal X-ray diffraction revealed a mononuclear structure for all complexes. The ability of the complexes to scavenge or trap reactive oxygen species such as O(2)⋅(−) and HO⋅ was proved by EPR spectroscopy experiments. All complexes inhibited B16 murine melanoma cells in a dose-dependent and nanomolar range, but the complexes with 1,10-phenanthroline were more active. Moreover, comparative activity on B16 and healthy BJ cells revealed a therapeutic index of 1.27–2.24. Bioinformatic methods were used to calculate the drug-likeness, pharmacokinetic, pharmacogenomic, and pharmacodynamic profiles of the compounds. The results showed that all compounds exhibit drug-likeness features, as well as promising absorption, distribution, metabolism, and excretion (ADME) properties, and no toxicity. The pharmacodynamics results showed that the neutral species appear to be good candidates for antitumor molecular targets (Tyrosyl-DNA phosphodiesterase 1, DNA-(apurinic or apyrimidinic site) lyase or Kruppel-like factor 5). Furthermore, the pharmacogenomic results showed a good affinity of the copper(II) complexes for the human cytochrome. These results recommend complexes bearing 1,10-phenanthroline as good candidates for developing drugs to melanoma alternative treatment. |
format | Online Article Text |
id | pubmed-9416163 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94161632022-08-27 Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity Olar, Rodica Maxim, Catalin Badea, Mihaela Bacalum, Mihaela Raileanu, Mina Avram, Speranta Korošin, Nataša Čelan Burlanescu, Teodora Rostas, Arpad Mihai Pharmaceutics Article Melanoma is a skin cancer characterized by rapid growth and spread for which current therapies produce both resistance and increased risk of infection. To develop new anti-melanoma biocompatible species, the series of complexes Cu(N-N)(bzac)(X)⋅nH(2)O (N-N: 1,10-phenanthroline/2,2′-bipyridine, Hbzac: 1-phenyl-1,3-butanedione, X: NO(3)/ClO(4), and n = 0, 1) was studied. Single-crystal X-ray diffraction revealed a mononuclear structure for all complexes. The ability of the complexes to scavenge or trap reactive oxygen species such as O(2)⋅(−) and HO⋅ was proved by EPR spectroscopy experiments. All complexes inhibited B16 murine melanoma cells in a dose-dependent and nanomolar range, but the complexes with 1,10-phenanthroline were more active. Moreover, comparative activity on B16 and healthy BJ cells revealed a therapeutic index of 1.27–2.24. Bioinformatic methods were used to calculate the drug-likeness, pharmacokinetic, pharmacogenomic, and pharmacodynamic profiles of the compounds. The results showed that all compounds exhibit drug-likeness features, as well as promising absorption, distribution, metabolism, and excretion (ADME) properties, and no toxicity. The pharmacodynamics results showed that the neutral species appear to be good candidates for antitumor molecular targets (Tyrosyl-DNA phosphodiesterase 1, DNA-(apurinic or apyrimidinic site) lyase or Kruppel-like factor 5). Furthermore, the pharmacogenomic results showed a good affinity of the copper(II) complexes for the human cytochrome. These results recommend complexes bearing 1,10-phenanthroline as good candidates for developing drugs to melanoma alternative treatment. MDPI 2022-08-14 /pmc/articles/PMC9416163/ /pubmed/36015318 http://dx.doi.org/10.3390/pharmaceutics14081692 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Olar, Rodica Maxim, Catalin Badea, Mihaela Bacalum, Mihaela Raileanu, Mina Avram, Speranta Korošin, Nataša Čelan Burlanescu, Teodora Rostas, Arpad Mihai Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity |
title | Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity |
title_full | Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity |
title_fullStr | Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity |
title_full_unstemmed | Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity |
title_short | Antiproliferative Copper(II) Complexes Bearing Mixed Chelating Ligands: Structural Characterization, ROS Scavenging, In Silico Studies, and Anti-Melanoma Activity |
title_sort | antiproliferative copper(ii) complexes bearing mixed chelating ligands: structural characterization, ros scavenging, in silico studies, and anti-melanoma activity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416163/ https://www.ncbi.nlm.nih.gov/pubmed/36015318 http://dx.doi.org/10.3390/pharmaceutics14081692 |
work_keys_str_mv | AT olarrodica antiproliferativecopperiicomplexesbearingmixedchelatingligandsstructuralcharacterizationrosscavenginginsilicostudiesandantimelanomaactivity AT maximcatalin antiproliferativecopperiicomplexesbearingmixedchelatingligandsstructuralcharacterizationrosscavenginginsilicostudiesandantimelanomaactivity AT badeamihaela antiproliferativecopperiicomplexesbearingmixedchelatingligandsstructuralcharacterizationrosscavenginginsilicostudiesandantimelanomaactivity AT bacalummihaela antiproliferativecopperiicomplexesbearingmixedchelatingligandsstructuralcharacterizationrosscavenginginsilicostudiesandantimelanomaactivity AT raileanumina antiproliferativecopperiicomplexesbearingmixedchelatingligandsstructuralcharacterizationrosscavenginginsilicostudiesandantimelanomaactivity AT avramsperanta antiproliferativecopperiicomplexesbearingmixedchelatingligandsstructuralcharacterizationrosscavenginginsilicostudiesandantimelanomaactivity AT korosinnatasacelan antiproliferativecopperiicomplexesbearingmixedchelatingligandsstructuralcharacterizationrosscavenginginsilicostudiesandantimelanomaactivity AT burlanescuteodora antiproliferativecopperiicomplexesbearingmixedchelatingligandsstructuralcharacterizationrosscavenginginsilicostudiesandantimelanomaactivity AT rostasarpadmihai antiproliferativecopperiicomplexesbearingmixedchelatingligandsstructuralcharacterizationrosscavenginginsilicostudiesandantimelanomaactivity |