Cargando…

A Portable ‘Plug-and-Play’ Fibre Optic Sensor for In-Situ Measurements of pH Values for Microfluidic Applications

Microfluidics is used in many applications ranging from chemistry, medicine, biology and biomedical research, and the ability to measure pH values in-situ is an important parameter for creating and monitoring environments within a microfluidic chip for many such applications. We present a portable,...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Rahul, Nguyen, Hien, Rente, Bruno, Tan, Christabel, Sun, Tong, Grattan, Kenneth T. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416338/
https://www.ncbi.nlm.nih.gov/pubmed/36014146
http://dx.doi.org/10.3390/mi13081224
Descripción
Sumario:Microfluidics is used in many applications ranging from chemistry, medicine, biology and biomedical research, and the ability to measure pH values in-situ is an important parameter for creating and monitoring environments within a microfluidic chip for many such applications. We present a portable, optical fibre-based sensor for monitoring the pH based on the fluorescent intensity change of an acrylamidofluorescein dye, immobilized on the tip of a multimode optical fibre, and its performance is evaluated in-situ in a microfluidic channel. The sensor showed a sigmoid response over the pH range of 6.0–8.5, with a maximum sensitivity of 0.2/pH in the mid-range at pH 7.5. Following its evaluation, the sensor developed was used in a single microfluidic PDMS channel and its response was monitored for various flow rates within the channel. The results thus obtained showed that the sensor is sufficiently robust and well-suited to be used for measuring the pH value of the flowing liquid in the microchannel, allowing it to be used for a number of practical applications in ‘lab-on-a-chip’ applications where microfluidics are used. A key feature of the sensor is its simplicity and the ease of integrating the sensor with the microfluidic channel being probed.