Cargando…

Probiotic Ameliorating Effects of Altered GABA/Glutamate Signaling in a Rodent Model of Autism

Autism spectrum disorders (ASDs) comprise a heterogeneous group of pathological conditions, mainly of genetic origin, characterized by stereotyped behavior, such as marked impairment in verbal and nonverbal communication, social skills, and cognition. Excitatory/inhibitory (E/I) imbalances have been...

Descripción completa

Detalles Bibliográficos
Autores principales: Bin-Khattaf, Rawan M., Alonazi, Mona A., Al-Dbass, Abeer M., Almnaizel, Ahmad T., Aloudah, Hisham S., Soliman, Dina A., El-Ansary, Afaf K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416367/
https://www.ncbi.nlm.nih.gov/pubmed/36005593
http://dx.doi.org/10.3390/metabo12080720
Descripción
Sumario:Autism spectrum disorders (ASDs) comprise a heterogeneous group of pathological conditions, mainly of genetic origin, characterized by stereotyped behavior, such as marked impairment in verbal and nonverbal communication, social skills, and cognition. Excitatory/inhibitory (E/I) imbalances have been recorded as an etiological mechanism of ASD. Furthermore, GABA, the main inhibitory neurotransmitter in adult life, is known to be much lower in both patients and rodent models of ASD. We propose correcting GABA signaling as a therapeutic strategy for ASD. In this study, 40 young male western Albino rats, 3–4 weeks in age, weighing about 60–70 g, were used. The animals were randomly assigned into six experimental groups, each including eight rats. Group I served as the control group and was orally administered phosphate-buffered saline. Groups II and III served as rodent models of ASD and were orally administered a neurotoxic dose of propionic acid (PPA). The rats in the three therapeutic groups (IV, V, and IV) received the same doses of PPA, followed by 0.2 g/kg body weight of pure Bifidobacterium infantis, a probiotic mixture of ProtexinR, and pure Lactobacillus bulgaricus, respectively, for 3 weeks. Selected variables related to oxidative stress, glutamate excitotoxicity, and gut bacteria were measured in the six groups. Both pure and mixed Lactobacillus and Bifidobacterium were effective in ameliorating glutamate excitotoxicity as an autistic feature developed in the PPA-induced rodent model. Their therapeutic effects mostly involved the correction of oxidative stress, restoration of depleted GABA, and up-regulation of GABA receptor gene expression. Pure Bifidobacterium was the most effective, followed by the mixture of probiotics and finally lactobacillus. In conclusion, Bifidobacteria and lactobacilli can be used independently or in combination as psychobiotics to ameliorate oxidative stress and glutamate excitotoxicity as two confirmed etiological mechanisms through the gut–brain axis.