Cargando…
Performance of Machine Learning and Texture Analysis for Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer with 3T MRI
Background: To evaluate the diagnostic performance of a Machine Learning (ML) algorithm based on Texture Analysis (TA) parameters in the prediction of Pathological Complete Response (pCR) to Neoadjuvant Chemoradiotherapy (nChRT) in Locally Advanced Rectal Cancer (LARC) patients. Methods: LARC patien...
Autores principales: | Bellini, Davide, Carbone, Iacopo, Rengo, Marco, Vicini, Simone, Panvini, Nicola, Caruso, Damiano, Iannicelli, Elsa, Tombolini, Vincenzo, Laghi, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416446/ https://www.ncbi.nlm.nih.gov/pubmed/36006071 http://dx.doi.org/10.3390/tomography8040173 |
Ejemplares similares
-
Development and Validation of Artificial-Intelligence-Based Radiomics Model Using Computed Tomography Features for Preoperative Risk Stratification of Gastrointestinal Stromal Tumors
por: Rengo, Marco, et al.
Publicado: (2023) -
Hepatic pseudolesion as an unusual presentation of Fitz-Hugh-Curtis syndrome
por: Vicini, Simone, et al.
Publicado: (2021) -
Magnetic Resonance of Rectal Cancer Response to Therapy: An Image Quality Comparison between 3.0 and 1.5 Tesla
por: Caruso, Damiano, et al.
Publicado: (2020) -
Magnetic resonance tumor regression grade (MR-TRG) to assess pathological complete response following neoadjuvant radiochemotherapy in locally advanced rectal cancer
por: Rengo, Marco, et al.
Publicado: (2017) -
Layered enhancement at magnetic resonance enterography in inflammatory bowel disease: A meta-analysis
por: Bellini, Davide, et al.
Publicado: (2019)