Cargando…

Hypoxia Effects on Trypanosoma cruzi Epimastigotes Proliferation, Differentiation, and Energy Metabolism

Trypanosoma cruzi, the causative agent of Chagas disease, faces changes in redox status and nutritional availability during its life cycle. However, the influence of oxygen fluctuation upon the biology of T. cruzi is unclear. The present work investigated the response of T. cruzi epimastigotes to hy...

Descripción completa

Detalles Bibliográficos
Autores principales: Saraiva, Francis M. S., Cosentino-Gomes, Daniela, Inacio, Job D. F., Almeida-Amaral, Elmo E., Louzada-Neto, Orlando, Rossini, Ana, Nogueira, Natália P., Meyer-Fernandes, José R., Paes, Marcia C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416468/
https://www.ncbi.nlm.nih.gov/pubmed/36015018
http://dx.doi.org/10.3390/pathogens11080897
_version_ 1784776487825571840
author Saraiva, Francis M. S.
Cosentino-Gomes, Daniela
Inacio, Job D. F.
Almeida-Amaral, Elmo E.
Louzada-Neto, Orlando
Rossini, Ana
Nogueira, Natália P.
Meyer-Fernandes, José R.
Paes, Marcia C.
author_facet Saraiva, Francis M. S.
Cosentino-Gomes, Daniela
Inacio, Job D. F.
Almeida-Amaral, Elmo E.
Louzada-Neto, Orlando
Rossini, Ana
Nogueira, Natália P.
Meyer-Fernandes, José R.
Paes, Marcia C.
author_sort Saraiva, Francis M. S.
collection PubMed
description Trypanosoma cruzi, the causative agent of Chagas disease, faces changes in redox status and nutritional availability during its life cycle. However, the influence of oxygen fluctuation upon the biology of T. cruzi is unclear. The present work investigated the response of T. cruzi epimastigotes to hypoxia. The parasites showed an adaptation to the hypoxic condition, presenting an increase in proliferation and a reduction in metacyclogenesis. Additionally, parasites cultured in hypoxia produced more reactive oxygen species (ROS) compared to parasites cultured in normoxia. The analyses of the mitochondrial physiology demonstrated that hypoxic condition induced a decrease in both oxidative phosphorylation and mitochondrial membrane potential (ΔΨm) in epimastigotes. In spite of that, ATP levels of parasites cultivated in hypoxia increased. The hypoxic condition also increased the expression of the hexokinase and NADH fumarate reductase genes and reduced NAD(P)H, suggesting that this increase in ATP levels of hypoxia-challenged parasites was a consequence of increased glycolysis and fermentation pathways. Taken together, our results suggest that decreased oxygen levels trigger a shift in the bioenergetic metabolism of T. cruzi epimastigotes, favoring ROS production and fermentation to sustain ATP production, allowing the parasite to survive and proliferate in the insect vector.
format Online
Article
Text
id pubmed-9416468
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94164682022-08-27 Hypoxia Effects on Trypanosoma cruzi Epimastigotes Proliferation, Differentiation, and Energy Metabolism Saraiva, Francis M. S. Cosentino-Gomes, Daniela Inacio, Job D. F. Almeida-Amaral, Elmo E. Louzada-Neto, Orlando Rossini, Ana Nogueira, Natália P. Meyer-Fernandes, José R. Paes, Marcia C. Pathogens Article Trypanosoma cruzi, the causative agent of Chagas disease, faces changes in redox status and nutritional availability during its life cycle. However, the influence of oxygen fluctuation upon the biology of T. cruzi is unclear. The present work investigated the response of T. cruzi epimastigotes to hypoxia. The parasites showed an adaptation to the hypoxic condition, presenting an increase in proliferation and a reduction in metacyclogenesis. Additionally, parasites cultured in hypoxia produced more reactive oxygen species (ROS) compared to parasites cultured in normoxia. The analyses of the mitochondrial physiology demonstrated that hypoxic condition induced a decrease in both oxidative phosphorylation and mitochondrial membrane potential (ΔΨm) in epimastigotes. In spite of that, ATP levels of parasites cultivated in hypoxia increased. The hypoxic condition also increased the expression of the hexokinase and NADH fumarate reductase genes and reduced NAD(P)H, suggesting that this increase in ATP levels of hypoxia-challenged parasites was a consequence of increased glycolysis and fermentation pathways. Taken together, our results suggest that decreased oxygen levels trigger a shift in the bioenergetic metabolism of T. cruzi epimastigotes, favoring ROS production and fermentation to sustain ATP production, allowing the parasite to survive and proliferate in the insect vector. MDPI 2022-08-09 /pmc/articles/PMC9416468/ /pubmed/36015018 http://dx.doi.org/10.3390/pathogens11080897 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Saraiva, Francis M. S.
Cosentino-Gomes, Daniela
Inacio, Job D. F.
Almeida-Amaral, Elmo E.
Louzada-Neto, Orlando
Rossini, Ana
Nogueira, Natália P.
Meyer-Fernandes, José R.
Paes, Marcia C.
Hypoxia Effects on Trypanosoma cruzi Epimastigotes Proliferation, Differentiation, and Energy Metabolism
title Hypoxia Effects on Trypanosoma cruzi Epimastigotes Proliferation, Differentiation, and Energy Metabolism
title_full Hypoxia Effects on Trypanosoma cruzi Epimastigotes Proliferation, Differentiation, and Energy Metabolism
title_fullStr Hypoxia Effects on Trypanosoma cruzi Epimastigotes Proliferation, Differentiation, and Energy Metabolism
title_full_unstemmed Hypoxia Effects on Trypanosoma cruzi Epimastigotes Proliferation, Differentiation, and Energy Metabolism
title_short Hypoxia Effects on Trypanosoma cruzi Epimastigotes Proliferation, Differentiation, and Energy Metabolism
title_sort hypoxia effects on trypanosoma cruzi epimastigotes proliferation, differentiation, and energy metabolism
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416468/
https://www.ncbi.nlm.nih.gov/pubmed/36015018
http://dx.doi.org/10.3390/pathogens11080897
work_keys_str_mv AT saraivafrancisms hypoxiaeffectsontrypanosomacruziepimastigotesproliferationdifferentiationandenergymetabolism
AT cosentinogomesdaniela hypoxiaeffectsontrypanosomacruziepimastigotesproliferationdifferentiationandenergymetabolism
AT inaciojobdf hypoxiaeffectsontrypanosomacruziepimastigotesproliferationdifferentiationandenergymetabolism
AT almeidaamaralelmoe hypoxiaeffectsontrypanosomacruziepimastigotesproliferationdifferentiationandenergymetabolism
AT louzadanetoorlando hypoxiaeffectsontrypanosomacruziepimastigotesproliferationdifferentiationandenergymetabolism
AT rossiniana hypoxiaeffectsontrypanosomacruziepimastigotesproliferationdifferentiationandenergymetabolism
AT nogueiranataliap hypoxiaeffectsontrypanosomacruziepimastigotesproliferationdifferentiationandenergymetabolism
AT meyerfernandesjoser hypoxiaeffectsontrypanosomacruziepimastigotesproliferationdifferentiationandenergymetabolism
AT paesmarciac hypoxiaeffectsontrypanosomacruziepimastigotesproliferationdifferentiationandenergymetabolism