Cargando…

Effect of Abrasive Grain Concession on Micromechanical Behavior of Lapping Sapphire by FAP

Aiming at exploring the material removal mechanism for sapphire using diamond abrasive grains at the microscopic level, this paper modeled and analyzed the microscopic yield behavior of diamond abrasive grains in the FAP grinding process of sapphire. Molecular dynamics were used to simulate the effe...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Huimin, Wang, Jianbin, Xu, Yiliang, Li, Qingan, Jiang, Benchi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416526/
https://www.ncbi.nlm.nih.gov/pubmed/36014244
http://dx.doi.org/10.3390/mi13081322
Descripción
Sumario:Aiming at exploring the material removal mechanism for sapphire using diamond abrasive grains at the microscopic level, this paper modeled and analyzed the microscopic yield behavior of diamond abrasive grains in the FAP grinding process of sapphire. Molecular dynamics were used to simulate the effects of abrasive particle size on the cutting force, potential energy, and temperature in the Newtonian zone during micro-cutting. The effect of different abrasive particle sizes on material removal was analyzed through experiments. The simulation results show that the abrasive particle radius was 12 Å, the micro-cutting force reached more than 3500 nN, while the cutting force with an abrasive particle radius of 8 Å only reached 1000 nN. Moreover, the potential energy, cutting force, and temperature in the Newtonian zone between the sapphire crystal atoms also increased. The results showed that the material removal rate saw a nonlinear increasing trend with the increase in particle sizes, while the surface roughness showed an approximately linear increase. Both of them showed a similar trend. The experimental results lay a theoretical basis for the selection of the lapping process parameters in sapphire.