Cargando…
Ligand Binding Prediction Using Protein Structure Graphs and Residual Graph Attention Networks
Computational prediction of ligand–target interactions is a crucial part of modern drug discovery as it helps to bypass high costs and labor demands of in vitro and in vivo screening. As the wealth of bioactivity data accumulates, it provides opportunities for the development of deep learning (DL) m...
Autores principales: | Pandey, Mohit, Radaeva, Mariia, Mslati, Hazem, Garland, Olivia, Fernandez, Michael, Ester, Martin, Cherkasov, Artem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416537/ https://www.ncbi.nlm.nih.gov/pubmed/36014351 http://dx.doi.org/10.3390/molecules27165114 |
Ejemplares similares
-
PurificationDB: database of purification conditions for proteins
por: Garland, Olivia, et al.
Publicado: (2023) -
GraphSite: Ligand Binding Site Classification with Deep Graph Learning
por: Shi, Wentao, et al.
Publicado: (2022) -
Graph Attention Site Prediction (GrASP): Identifying Druggable Binding Sites Using Graph Neural Networks with Attention
por: Smith, Zachary, et al.
Publicado: (2023) -
GraphBind: protein structural context embedded rules learned by hierarchical graph neural networks for recognizing nucleic-acid-binding residues
por: Xia, Ying, et al.
Publicado: (2021) -
Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer
por: Zhao, Ming, et al.
Publicado: (2020)