Cargando…
Bearing Fault Feature Extraction Method Based on Enhanced Differential Product Weighted Morphological Filtering
Aimed at the problem of fault characteristic information bearing vibration signals being easily submerged in some background noise and harmonic interference, a new algorithm named enhanced differential product weighted morphological filtering (EDPWMF) is proposed for bearing fault feature extraction...
Autores principales: | Yan, Xiaoan, Liu, Tao, Fu, Mengyuan, Ye, Maoyou, Jia, Minping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416585/ https://www.ncbi.nlm.nih.gov/pubmed/36015944 http://dx.doi.org/10.3390/s22166184 |
Ejemplares similares
-
Rolling Bearing Fault Diagnosis Based on VMD-MPE and PSO-SVM
por: Ye, Maoyou, et al.
Publicado: (2021) -
A Fault Diagnosis Approach for Rolling Bearing Integrated SGMD, IMSDE and Multiclass Relevance Vector Machine
por: Yan, Xiaoan, et al.
Publicado: (2020) -
Intelligent Fault Diagnosis of Rolling-Element Bearings Using a Self-Adaptive Hierarchical Multiscale Fuzzy Entropy
por: Yan, Xiaoan, et al.
Publicado: (2021) -
Blind Fault Extraction of Rolling-Bearing Compound Fault Based on Improved Morphological Filtering and Sparse Component Analysis
por: Xie, Wensong, et al.
Publicado: (2022) -
Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
por: Zhu, Huibin, et al.
Publicado: (2021)