Cargando…
Feature Selection Techniques for a Machine Learning Model to Detect Autonomic Dysreflexia
Feature selection plays a crucial role in the development of machine learning algorithms. Understanding the impact of the features on a model, and their physiological relevance can improve the performance. This is particularly helpful in the healthcare domain wherein disease states need to be identi...
Autores principales: | Suresh, Shruthi, Newton, David T., Everett, Thomas H., Lin, Guang, Duerstock, Bradley S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416695/ https://www.ncbi.nlm.nih.gov/pubmed/36033642 http://dx.doi.org/10.3389/fninf.2022.901428 |
Ejemplares similares
-
Automatic Detection and Characterization of Autonomic Dysreflexia Using Multi-Modal Non-Invasive Sensing and Neural Networks
por: Suresh, Shruthi, et al.
Publicado: (2022) -
Time and frequency domain analysis of physiological features during autonomic dysreflexia after spinal cord injury
por: Kirby, Ana Karina, et al.
Publicado: (2023) -
Automated Detection of Symptomatic Autonomic Dysreflexia Through Multimodal Sensing
Publicado: (2020) -
Autonomic Dysreflexia following Spinal Cord Injury
por: Balik, Vladimír, et al.
Publicado: (2022) -
Intraspinal Plasticity Associated With the Development of Autonomic Dysreflexia After Complete Spinal Cord Injury
por: Michael, Felicia M., et al.
Publicado: (2019)