Cargando…
Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents
In this communication, a paramagnetic bifunctional manganese(ii) chelate ([Mn(Dopa-EDTA)](2−)) containing a catechol group is designed and synthesized. The catechol can bind iron ions on the surface of superparamagnetic iron oxide (SPIO) nanocrystals to form core–shell nanoparticles. Both 4 and 7 nm...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416939/ https://www.ncbi.nlm.nih.gov/pubmed/36132378 http://dx.doi.org/10.1039/d0na00117a |
_version_ | 1784776587470700544 |
---|---|
author | Wu, Changqiang Chen, Tianwu Deng, Lihua Xia, Qian Chen, Chuan Lan, Mu Pu, Yu Tang, Hongjie Xu, Ye Zhu, Jiang Xu, Chenjie Shen, Chengyi Zhang, Xiaoming |
author_facet | Wu, Changqiang Chen, Tianwu Deng, Lihua Xia, Qian Chen, Chuan Lan, Mu Pu, Yu Tang, Hongjie Xu, Ye Zhu, Jiang Xu, Chenjie Shen, Chengyi Zhang, Xiaoming |
author_sort | Wu, Changqiang |
collection | PubMed |
description | In this communication, a paramagnetic bifunctional manganese(ii) chelate ([Mn(Dopa-EDTA)](2−)) containing a catechol group is designed and synthesized. The catechol can bind iron ions on the surface of superparamagnetic iron oxide (SPIO) nanocrystals to form core–shell nanoparticles. Both 4 and 7 nm SPIO@[Mn(Dopa-EDTA)](2−) show good water solubility, single-crystal dispersion, and low cytotoxicity. The study of the interplay between the longitudinal and transverse relaxation revealed that 4 nm SPIO@[Mn(Dopa-EDTA)](2−) with lower r(2)/r(1) = 1.75 at 0.5 T tends to be a perfect T(1) contrast agent while 7 nm SPIO@[Mn(Dopa-EDTA)](2−) with a higher r(2)/r(1) = 15.0 at 3.0 T tends to be a T(2) contrast agent. Interestingly, 4 nm SPIO@[Mn(Dopa-EDTA)](2−) with an intermediate value of r(2)/r(1) = 5.26 at 3.0 T could act as T(1)–T(2) dual-modal contrast agent. In vivo imaging with the 4 nm SPIO@[Mn(Dopa-EDTA)](2−) nanoparticle shows unique imaging features: (1) long-acting vascular imaging and different signal intensity changes between the liver parenchyma and blood vessels with the CEMRA sequence; (2) the synergistic contrast enhancement of hepatic imaging with the T(1)WI and T(2)WI sequence. In summary, these Fe/Mn hybrid core–shell nanoparticles, with their ease of synthesis, good biocompatibility, and synergistic contrast enhancement ability, may provide a useful method for tissue and vascular MR imaging. |
format | Online Article Text |
id | pubmed-9416939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94169392022-09-20 Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents Wu, Changqiang Chen, Tianwu Deng, Lihua Xia, Qian Chen, Chuan Lan, Mu Pu, Yu Tang, Hongjie Xu, Ye Zhu, Jiang Xu, Chenjie Shen, Chengyi Zhang, Xiaoming Nanoscale Adv Chemistry In this communication, a paramagnetic bifunctional manganese(ii) chelate ([Mn(Dopa-EDTA)](2−)) containing a catechol group is designed and synthesized. The catechol can bind iron ions on the surface of superparamagnetic iron oxide (SPIO) nanocrystals to form core–shell nanoparticles. Both 4 and 7 nm SPIO@[Mn(Dopa-EDTA)](2−) show good water solubility, single-crystal dispersion, and low cytotoxicity. The study of the interplay between the longitudinal and transverse relaxation revealed that 4 nm SPIO@[Mn(Dopa-EDTA)](2−) with lower r(2)/r(1) = 1.75 at 0.5 T tends to be a perfect T(1) contrast agent while 7 nm SPIO@[Mn(Dopa-EDTA)](2−) with a higher r(2)/r(1) = 15.0 at 3.0 T tends to be a T(2) contrast agent. Interestingly, 4 nm SPIO@[Mn(Dopa-EDTA)](2−) with an intermediate value of r(2)/r(1) = 5.26 at 3.0 T could act as T(1)–T(2) dual-modal contrast agent. In vivo imaging with the 4 nm SPIO@[Mn(Dopa-EDTA)](2−) nanoparticle shows unique imaging features: (1) long-acting vascular imaging and different signal intensity changes between the liver parenchyma and blood vessels with the CEMRA sequence; (2) the synergistic contrast enhancement of hepatic imaging with the T(1)WI and T(2)WI sequence. In summary, these Fe/Mn hybrid core–shell nanoparticles, with their ease of synthesis, good biocompatibility, and synergistic contrast enhancement ability, may provide a useful method for tissue and vascular MR imaging. RSC 2020-06-17 /pmc/articles/PMC9416939/ /pubmed/36132378 http://dx.doi.org/10.1039/d0na00117a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Wu, Changqiang Chen, Tianwu Deng, Lihua Xia, Qian Chen, Chuan Lan, Mu Pu, Yu Tang, Hongjie Xu, Ye Zhu, Jiang Xu, Chenjie Shen, Chengyi Zhang, Xiaoming Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents |
title | Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents |
title_full | Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents |
title_fullStr | Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents |
title_full_unstemmed | Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents |
title_short | Mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents |
title_sort | mn(ii) chelate-coated superparamagnetic iron oxide nanocrystals as high-efficiency magnetic resonance imaging contrast agents |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416939/ https://www.ncbi.nlm.nih.gov/pubmed/36132378 http://dx.doi.org/10.1039/d0na00117a |
work_keys_str_mv | AT wuchangqiang mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT chentianwu mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT denglihua mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT xiaqian mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT chenchuan mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT lanmu mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT puyu mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT tanghongjie mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT xuye mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT zhujiang mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT xuchenjie mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT shenchengyi mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents AT zhangxiaoming mniichelatecoatedsuperparamagneticironoxidenanocrystalsashighefficiencymagneticresonanceimagingcontrastagents |