Cargando…
Spin filtering with Mn-doped Ge-core/Si-shell nanowires
Incorporating spin functionality into a semiconductor core–shell nanowire that offers immunity from the substrate effect is a highly desirable step for its application in next generation spintronics. Here, using first-principles density functional theory that does not make any assumptions of the ele...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
RSC
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416944/ https://www.ncbi.nlm.nih.gov/pubmed/36132517 http://dx.doi.org/10.1039/c9na00803a |
_version_ | 1784776588678660096 |
---|---|
author | Aryal, Sandip Pati, Ranjit |
author_facet | Aryal, Sandip Pati, Ranjit |
author_sort | Aryal, Sandip |
collection | PubMed |
description | Incorporating spin functionality into a semiconductor core–shell nanowire that offers immunity from the substrate effect is a highly desirable step for its application in next generation spintronics. Here, using first-principles density functional theory that does not make any assumptions of the electronic structure, we predict that a very small amount of Mn dopants in the core region of the wire can transform the Ge–Si core–shell semiconductor nanowire into a half-metallic ferromagnet that is stable at room temperature. The energy band structures reveal a semiconducting behavior for one spin direction while the metallic behavior for the other, indicating 100% spin polarization at the Fermi energy. No measurable shifts in energy levels in the vicinity of Fermi energy are found due to spin–orbit coupling, which suggests that the spin coherence length can be much higher in this material. To further assess the use of this material in a practical device setting, we have used a quantum transport approach to calculate the spin-filtering efficiency for a channel made out of a finite nanowire segment. Our calculations yield an efficiency more than 90%, which further confirms the excellent spin-selective properties of our newly tailored Mn-doped Ge-core/Si-shell nanowires. |
format | Online Article Text |
id | pubmed-9416944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | RSC |
record_format | MEDLINE/PubMed |
spelling | pubmed-94169442022-09-20 Spin filtering with Mn-doped Ge-core/Si-shell nanowires Aryal, Sandip Pati, Ranjit Nanoscale Adv Chemistry Incorporating spin functionality into a semiconductor core–shell nanowire that offers immunity from the substrate effect is a highly desirable step for its application in next generation spintronics. Here, using first-principles density functional theory that does not make any assumptions of the electronic structure, we predict that a very small amount of Mn dopants in the core region of the wire can transform the Ge–Si core–shell semiconductor nanowire into a half-metallic ferromagnet that is stable at room temperature. The energy band structures reveal a semiconducting behavior for one spin direction while the metallic behavior for the other, indicating 100% spin polarization at the Fermi energy. No measurable shifts in energy levels in the vicinity of Fermi energy are found due to spin–orbit coupling, which suggests that the spin coherence length can be much higher in this material. To further assess the use of this material in a practical device setting, we have used a quantum transport approach to calculate the spin-filtering efficiency for a channel made out of a finite nanowire segment. Our calculations yield an efficiency more than 90%, which further confirms the excellent spin-selective properties of our newly tailored Mn-doped Ge-core/Si-shell nanowires. RSC 2020-02-28 /pmc/articles/PMC9416944/ /pubmed/36132517 http://dx.doi.org/10.1039/c9na00803a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Aryal, Sandip Pati, Ranjit Spin filtering with Mn-doped Ge-core/Si-shell nanowires |
title | Spin filtering with Mn-doped Ge-core/Si-shell nanowires |
title_full | Spin filtering with Mn-doped Ge-core/Si-shell nanowires |
title_fullStr | Spin filtering with Mn-doped Ge-core/Si-shell nanowires |
title_full_unstemmed | Spin filtering with Mn-doped Ge-core/Si-shell nanowires |
title_short | Spin filtering with Mn-doped Ge-core/Si-shell nanowires |
title_sort | spin filtering with mn-doped ge-core/si-shell nanowires |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416944/ https://www.ncbi.nlm.nih.gov/pubmed/36132517 http://dx.doi.org/10.1039/c9na00803a |
work_keys_str_mv | AT aryalsandip spinfilteringwithmndopedgecoresishellnanowires AT patiranjit spinfilteringwithmndopedgecoresishellnanowires |