Cargando…

Molecular characterization and genetic diversity analysis in Indian mustard (Brassica juncea L. Czern & Coss.) varieties using SSR markers

In this study, we evaluated genetic diversity in a panel of 87 Indian mustard varieties using 200 genomic-SSR markers. A total of 189 SSRs resulted into positive amplification with 174 (92.06%) SSRs generating polymorphic products and 15 (7.94%) SSRs producing monomorphic amplicons. A total of 552 a...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, K. H., Singh, Lal, Parmar, Nehanjali, Kumar, Sunil, Nanjundan, J., Singh, Guman, Thakur, Ajay Kumar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417036/
https://www.ncbi.nlm.nih.gov/pubmed/36018849
http://dx.doi.org/10.1371/journal.pone.0272914
Descripción
Sumario:In this study, we evaluated genetic diversity in a panel of 87 Indian mustard varieties using 200 genomic-SSR markers. A total of 189 SSRs resulted into positive amplification with 174 (92.06%) SSRs generating polymorphic products and 15 (7.94%) SSRs producing monomorphic amplicons. A total of 552 alleles were obtained and allele number varied from 2–6 with an average number of 3.17 alleles per SSR marker. The major allele frequency ranged from 0.29 (ENA23) to 0.92 (BrgMS841) with an average value of 0.58 per SSR locus. The polymorphic information content (PIC) value ranged from 0.10 (BrgMS841) to 0.68 (BrgMS519) with 0.39 as mean PIC value. The gene diversity per locus ranged from 0.13 (BrgMS841) to 0.72 (ENA23 & BrgMS519) with a mean value of 0.48 per SSR primer pair. Both Unweighted Neighbor Joining-based dendrogram and population structure analysis divided all the 87 varieties into two major groups/subpopulations. Analysis of molecular variance (AMOVA) inferred the presence of more genetic variation (98%) among individuals than among groups (2%). A total of 31 SSRs produced 36 unique alleles for 27 varieties which will serve as unique DNA-fingerprints for the identification and legal protection of these varieties. Further, the results obtained provided a deeper insight into the genetic structure of Indian mustard varieties in India and will assist in formulating future breeding strategies aimed at Indian mustard genetic improvement.