Cargando…
Highly scalable maximum likelihood and conjugate Bayesian inference for ERGMs on graph sets with equivalent vertices
The exponential family random graph modeling (ERGM) framework provides a highly flexible approach for the statistical analysis of networks (i.e., graphs). As ERGMs with dyadic dependence involve normalizing factors that are extremely costly to compute, practical strategies for ERGMs inference genera...
Autores principales: | Yin, Fan, Butts, Carter T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417041/ https://www.ncbi.nlm.nih.gov/pubmed/36018834 http://dx.doi.org/10.1371/journal.pone.0273039 |
Ejemplares similares
-
RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference
por: Kozlov, Alexey M, et al.
Publicado: (2019) -
An investigation of irreproducibility in maximum likelihood phylogenetic inference
por: Shen, Xing-Xing, et al.
Publicado: (2020) -
Patterns of scalable Bayesian inference
por: Angelino, Elaine, et al.
Publicado: (2016) -
Correcting for Sequencing Error in Maximum Likelihood Phylogeny Inference
por: Kuhner, Mary K., et al.
Publicado: (2014) -
Patent citation network analysis: A perspective from descriptive statistics and ERGMs
por: Chakraborty, Manajit, et al.
Publicado: (2020)