Cargando…
Too much information: Why CDCL solvers need to forget learned clauses
Conflict-driven clause learning (CDCL) is a remarkably successful paradigm for solving the satisfiability problem of propositional logic. Instead of a simple depth-first backtracking approach, this kind of solver learns the reason behind occurring conflicts in the form of additional clauses. However...
Autores principales: | Krüger, Tom, Lorenz, Jan-Hendrik, Wörz, Florian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417043/ https://www.ncbi.nlm.nih.gov/pubmed/36018865 http://dx.doi.org/10.1371/journal.pone.0272967 |
Ejemplares similares
-
On the Effect of Learned Clauses on Stochastic Local Search
por: Lorenz, Jan-Hendrik, et al.
Publicado: (2020) -
Not Too Much and Not Too Little: Information Processing for a Good Purchase Decision
por: Vogrincic-Haselbacher, Claudia, et al.
Publicado: (2021) -
How much is too much? The effects of information quantity on crowdfunding performance
por: Moy, Naomi, et al.
Publicado: (2018) -
A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality
por: Blanchette, Jasmin Christian, et al.
Publicado: (2018) -
How Much Drool Is Too Much?()
por: Schubert, Gena, et al.
Publicado: (2019)