Cargando…

A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing

Artificial synapses based on electrolyte gated transistors with conductance modulation characteristics have demonstrated their great potential in emulating the memory functions in the human brain for neuromorphic computing. While previous studies are mostly focused on the emulation of the basic memo...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xuerong, Sun, Cui, Guo, Zhecheng, Zhang, Yuejun, Zhang, Zheng, Shang, Jie, Zhong, Zhicheng, Zhu, Xiaojian, Yu, Xue, Li, Run-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417048/
https://www.ncbi.nlm.nih.gov/pubmed/36134138
http://dx.doi.org/10.1039/d2na00146b
_version_ 1784776614109773824
author Liu, Xuerong
Sun, Cui
Guo, Zhecheng
Zhang, Yuejun
Zhang, Zheng
Shang, Jie
Zhong, Zhicheng
Zhu, Xiaojian
Yu, Xue
Li, Run-Wei
author_facet Liu, Xuerong
Sun, Cui
Guo, Zhecheng
Zhang, Yuejun
Zhang, Zheng
Shang, Jie
Zhong, Zhicheng
Zhu, Xiaojian
Yu, Xue
Li, Run-Wei
author_sort Liu, Xuerong
collection PubMed
description Artificial synapses based on electrolyte gated transistors with conductance modulation characteristics have demonstrated their great potential in emulating the memory functions in the human brain for neuromorphic computing. While previous studies are mostly focused on the emulation of the basic memory functions of homo-synapses using single-gate transistors, multi-gate transistors offer opportunities for the mimicry of more complex and advanced memory formation behaviors in biological hetero-synapses. In this work, we demonstrate an artificial hetero-synapse based on a dual-gate electrolyte transistor that can implement in situ spatiotemporal information integration and storage. We show that electric pulses applied on a single gate or unsynchronized electric pulses applied on dual gates only induce volatile conductance modulation for short-term memory emulation. In contrast, the device integrates the electric pulses coincidently applied on the dual gates in a supralinear manner and exhibits nonvolatile conductance modulation, enabling long-term memory emulation. Further studies prove that artificial neural networks based on such hetero-synaptic transistors can autonomously filter the random noise signals in the dual-gate inputs during spatiotemporal integration, facilitating the formation of accurate and stable memory. Compared to the single-gate synaptic transistor, the classification accuracy of MNIST handwritten digits using the hetero-synaptic transistor is improved from 89.3% to 99.0%. These findings demonstrate the great potential of multi-gate hetero-synaptic transistors in simulating complex spatiotemporal information processing functions and provide new platforms for the design of advanced neuromorphic computing systems.
format Online
Article
Text
id pubmed-9417048
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher RSC
record_format MEDLINE/PubMed
spelling pubmed-94170482022-09-20 A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing Liu, Xuerong Sun, Cui Guo, Zhecheng Zhang, Yuejun Zhang, Zheng Shang, Jie Zhong, Zhicheng Zhu, Xiaojian Yu, Xue Li, Run-Wei Nanoscale Adv Chemistry Artificial synapses based on electrolyte gated transistors with conductance modulation characteristics have demonstrated their great potential in emulating the memory functions in the human brain for neuromorphic computing. While previous studies are mostly focused on the emulation of the basic memory functions of homo-synapses using single-gate transistors, multi-gate transistors offer opportunities for the mimicry of more complex and advanced memory formation behaviors in biological hetero-synapses. In this work, we demonstrate an artificial hetero-synapse based on a dual-gate electrolyte transistor that can implement in situ spatiotemporal information integration and storage. We show that electric pulses applied on a single gate or unsynchronized electric pulses applied on dual gates only induce volatile conductance modulation for short-term memory emulation. In contrast, the device integrates the electric pulses coincidently applied on the dual gates in a supralinear manner and exhibits nonvolatile conductance modulation, enabling long-term memory emulation. Further studies prove that artificial neural networks based on such hetero-synaptic transistors can autonomously filter the random noise signals in the dual-gate inputs during spatiotemporal integration, facilitating the formation of accurate and stable memory. Compared to the single-gate synaptic transistor, the classification accuracy of MNIST handwritten digits using the hetero-synaptic transistor is improved from 89.3% to 99.0%. These findings demonstrate the great potential of multi-gate hetero-synaptic transistors in simulating complex spatiotemporal information processing functions and provide new platforms for the design of advanced neuromorphic computing systems. RSC 2022-04-20 /pmc/articles/PMC9417048/ /pubmed/36134138 http://dx.doi.org/10.1039/d2na00146b Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Liu, Xuerong
Sun, Cui
Guo, Zhecheng
Zhang, Yuejun
Zhang, Zheng
Shang, Jie
Zhong, Zhicheng
Zhu, Xiaojian
Yu, Xue
Li, Run-Wei
A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing
title A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing
title_full A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing
title_fullStr A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing
title_full_unstemmed A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing
title_short A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing
title_sort flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417048/
https://www.ncbi.nlm.nih.gov/pubmed/36134138
http://dx.doi.org/10.1039/d2na00146b
work_keys_str_mv AT liuxuerong aflexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT suncui aflexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT guozhecheng aflexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT zhangyuejun aflexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT zhangzheng aflexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT shangjie aflexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT zhongzhicheng aflexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT zhuxiaojian aflexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT yuxue aflexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT lirunwei aflexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT liuxuerong flexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT suncui flexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT guozhecheng flexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT zhangyuejun flexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT zhangzheng flexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT shangjie flexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT zhongzhicheng flexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT zhuxiaojian flexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT yuxue flexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing
AT lirunwei flexibledualgateheterosynaptictransistorforspatiotemporalinformationprocessing